Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Математические модели случайных сигналов





Математическая основа такой модели – это аппарат теории вероятности и теории случайных процессов. Семейство возможных реализаций yi(t) подчиненных определенным вероятным характеристикам, образует случайный сигнал y(t).

 

 

б)
а)

 

Рис. 5.7. Случайные сигналы во временном сечении t1:

а) сигнал Y1(t), б) сигнал Y2(t)

 

       
 
а)
   
б)
 


 

Рис. 5.8. Корреляционные функции случайных сигналов:

а) R1(t) для сигнала Y1(t), б) R2(t) для сигнала Y2(t)

 

Такими характеристиками могут быть закон распределения случайных величин или его числовые характеристики (математическое ожидание, среднеквадратичное отклонение) и корреляционная функция или спектральная плотность мощности сигнала.

Случайный сигнал Y(t) в некотором временном сечении t1 (рис. 5.7., 5.8.)

Можно рассматривать как случайную величину Y(t1), реализациями которой являются значения yi(ti). Для описания сигнала Y(t) в этот момент времени применим одномерный закон распределения F(y, t1). Если этот закон не зависит от времени т.е.

F(y, t1)=F(y, t2)=F(y),

t1≠ t2,

то такие сигналы являются стационарными (в широком смысле).

Закон распределения F(y) определяет пространственную по оси ординат структуру сигнала Y(t). Иногда вместо F(y) могут быть использованы его характеристики: математическое ожидание M(y) и среднее квадратичное отклонение σ у. Описание Y(t) только законами распределения F(y) оказывается недостаточным, поскольку оно не характеризует изменение сигнала во времени.

Так, например, сигналы изображенные на рис.5.7, а и 5.7, б могут иметь одинаковые законы распределения, однако обладают разной динамикой изменения во времени.

Для оценки динамических свойств сигнала используют понятия корреляционной функции R(t). Для стационарных сигналов с математическим ожиданием равным нулю R(t) определяется математическим ожиданием произведения значения реализации y(t) в момент времени t и t+τ по формуле:

, (5.11)

где N - число реализации случайного сигнала.

R(τ) характеризует статистическую связь между значениями случайных сигналов в различные моменты времени. Чем меньше значение корреляционной функции, тем меньше в среднем зависит значение сигнала y(t1+τ) в момент времени t1+τ от значения y(t1) в момент времени t1.

На рис. 5.8, а, б качественно изображены корреляционные функции R1(τ) и R2(τ) соответствующие сигналам Y1(t) и Y2(t). R1(τ) относительно слабо затухает с увеличением τ, что говорит о сильной корреляции y(t1) и y(t+τ), для функции Y1(t) это отражается в относительно плавном изменении сигналов. Для функции Y2(t) (рис. 5.7, б) свойственна слабая корреляция реализаций функции в интервале τ между моментами времени t1 и t+ , т.е. с изменением времени корреляция круто падает (рис. 5.8, б).







Дата добавления: 2014-11-12; просмотров: 788. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия