Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Формализованное описание экономических систем как систем массового обслуживания и методы их исследования





Для описания любой системы массового обслуживания необходимо установить:

1) общее число источников требований (N) и взаимосвязи между ними,

2) количество каналов обслуживания (m);

3) входящий поток требований (A);

4) поток обслуживания (B);

5) количество мест ожидания (K),

6) дисциплину и доступность обслуживания;

7) для многофазных систем – матрицу передач между фазами.

Таким образом, любую систему массового обслуживания можно формально описать следующим образом:

A/B/m/K/N,

где A-входной поток требований,

B-поток обслуживания,

N-общее число источников требований,

m-количество каналов обслуживания,

K-количество мест ожидания.

Входящий поток требований – это последовательность требований, поступающих в систему для обслуживания (совокупность периодичностей обслуживания).

В очень редких случаях требования поступают через одинаковые промежутки времени и такие потоки называют регулярными.

Однако, в большинстве случаев поток требований носит случайный характер и описывается математическим ожиданием (), характеристиками рассеяния (V), видом закона распределения интервалов между моментами поступления требований на обслуживание.

Вместо значения средней периодичности поступления заявок () часто используют обратную величину, которая называется интенсивностью потока требований.

,

где l - интенсивность потока требований,

– средняя периодичность поступления заявок на обслуживание.

Поток обслуживания – это совокупность длительностей обслуживания; для его характеристики необходимо также указать математическое ожидание () и степень рассеивания (V) и закон распределения интервалов длительности обслуживания.

Вместо средней длительности обслуживания – обратную величину, которая называется средней интенсивностью потока обслуживания ().

Для практических расчетов наиболее важными являются два вида потоков требований:

1. Простейший, который создается большим числом источников требований и характеризуется следующими свойствами:

- ординарностью,

- стационарностью,

- отсутствием последействия.

Ординарность – невозможность одновременного поступления двух или более требований в бесконечно малый промежуток времени.

Стационарность - предполагает, что средняя интенсивность потока не изменяется с течением времени.

Отсутствие последействия - вероятность поступления требований в определенный промежуток не зависит от предшествующего течения процесса.

2. С простым последействием – поток формируется конечным числом источников требований и интервалы времени между поступлениями соседних требований распределяются по экспоненциальному закону (пример, ремонт и обслуживание оборудования)

Для многофазных систем необходимо определить маршруты требований между фазами, что задается в виде матрицы, содержащей вероятности перехода требований между фазами.

 

Матрица передач для многофазной системы

 

      n
    P12 P1n
  P21   P2n
n Pn1 Pn2 P1

где Pij – характеризует вероятность перехода требования от i-фазы к j-фазе.

n – количество фаз обслуживания

 

Описав входные параметры системы массового обслуживания, необходимо определить показатели, характеризующие результаты ее работы (рис. 4.6, 4.7).

 
 

 


Рис. 4.6. Схема моделирования в теории массового обслуживания

 

Для расчета указанных результирующих характеристик СМО разработаны аналитические зависимости: для каждого типа системы свои зависимости. Вместе с тем теория массового обслуживания – относительно молодая наука, аналитические зависимости в которой разработаны лишь для очень ограниченного числа систем массового обслуживания. Это, в основном, системы с экспоненциальным распределением длительности обслуживания и интервалов между моментами требований.

В остальных случаях для расчета результирующих характеристик рекомендуется использовать имитационное моделирование на ПЭВМ.


 
 

 


Рис. 4.7. Схема применения теории массового обслуживания для оптимизации хозяйственных систем

 

Практический пример. Разработка норм численности с использованием ТМО (15)

 

Имеется инструментальный склад, обслуживающий несколько цехов фирмы. Аналитически известны интенсивность потока требований на инструмент λ и интенсивность потока обслуживаний μ за смену. Известны также потери в единицу времени: от простоя в очереди - n усл. ед., на содержание кладовщика - т усл. ед.

Менеджеров, организующих производственный процесс, интересует среднее время ожидания обслуживания и среднее время обслуживания при разном количестве кладовщиков s инструментального склада. Также важно найти оптимальное количество кладовщиков с учетом затрат в единицу времени на простой в очереди и на содержание кладовщика.

 

Методика решения задачи:

При работе одного кладовщика данную задачу можно представить в виде одноканальной системы обслуживания с неограниченной очередью.

ρ =

При ρ > 1 очередь растет неограниченно.

При ρ < 1 имеем следующие показатели.

Вероятность отсутствия очереди:

p 0 = 1 - ρ

Вероятность очереди из (k - 1) заявок:

pk = ρ k (1 - ρ) или pk = ρ kp 0

Среднее время ожидания в системе Tc = 1/μ (1/(1 - ρ)).

Tc = Тож + Тобс

Среднее время ожидания обслуживания:

Тож = 1/μ (1/(1 - ρ)).

Среднее время обслуживания:

Тобс = 1/μ

При работе s кладовщиков задачу можно описать как многоканальную систему с неограниченной очередью.

Если ρ / s < 1, то существуют финальные вероятности.

Если ρ / s ≥ 1, то очередь растет до бесконечности.

При этом ρ может быть больше 1.

Предположим, что условие (ρ / s) < 1 выполнено. Тогда вероятность отсутствия очереди равна:

p0=

Среднее число заявок в очереди:

Lоч= .

Среднее число заявок в системе (с учетом уже обслуживающихся заявок):

Lc=Lоч+p.

Среднее время пребывания заявки в очереди:

Точ= .

Среднее время пребывания заявки в системе:

Тс=

Предположим, что затраты в единицу времени на простой составляют 7 усл. ед., а на содержание одного кладовщика 5 усл. ед. Тогда получим следующие результаты при разном количестве кладовщиков (полагаем, что λ = 1, 6, μ = 0, 9, р = 1, 77).

При s=2: Тс = 5, 11, общие затраты 7*5, 11 + 5*2 = 45, 77 усл. ед.

При s=3: Тс= 1, 42, общие затраты 7 * 1, 42 + 5 * 3 = 24, 94 усл. ед.

При s=4: Тc = 1, 17, общие затраты 7 * 1, 17 + 5 * 4 = 28, 19 усл. ед.

Видно, что с экономической точки зрения выгодно держать на складе трех кладовщиков.

Варианты заданий 1

(рассчитать показатели работы СМО

для одного кладовщика)

 

№ варианта                
λ 1, 25 2, 50 3, 78 4, 89 3, 75 2, 80 1, 85 1, 90
μ 1, 50 3, 75 4, 56 5, 50 4, 45 3, 60 2, 76 2, 16

 

№ варианта                
λ 1, 80 1, 34 1, 54 1, 45 2, 67 1, 76 2, 65 1, 35
μ 2, 16 2, 46 2, 00 1, 79 2, 74 1, 90 3, 46 1, 46

 

№ варианта                
λ 1, 56 1, 47 1, 78 1, 90 1, 76 1, 54 1, 74 1, 85
μ 1, 95 2, 00 2, 16 2, 04 1, 80 1, 95 2, 16 2, 45

 

Варианты заданий 2

(рассчитать показатели работы СМО для 2, 3,..., 5 кладовщиков,

принять решение об их оптимальном количестве с учетом затрат

на простой n и на содержание одного кладовщика m)

 

№ варианта                
λ 1, 71 2, 50 2, 78 1, 89 1, 75 1, 80 2, 85 3, 90
μ 1, 00 1, 75 2, 00 1, 25 1, 15 1, 26 2, 00 3, 36
n                
m                

 

№ варианта                
λ 3, 80 2, 34 3, 75 2, 45 3, 00 2, 76 1, 65 2, 35
μ 2, 56 1, 46 3, 00 1, 39 2, 54 2, 27 0, 96 1, 36
n                
m                

 

№ варианта                
λ 1, 56 1, 47 2, 78 2, 90 2, 76 1, 54 1, 74 1, 85
μ 0, 85 0, 58 1, 96 1, 84 1, 73 0, 95 0, 96 1, 45
n                
m                

 







Дата добавления: 2014-11-12; просмотров: 997. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия