Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Прямоугольный импульс





Аналитическое выражение: Временное представление:

 

 

Рисунок 3.5 – Прямоугольный импульс

 

Для определения спектральной плотности амплитуд прямоугольного импульса воспользуемся интегралом Фурье (3.13) и формулой Эйлера (3.6)

(3.16)

 

Из (3.16) следует, что спектральная плотность амплитуды прямоугольного импульса описывается функцией вида . Из математики известно, что . На рисунке 3.6 представлен график зависимости (3.16). Определим ширину спектра прямоугольного импульса ∆ ω пр, для чего определим значения частот, в которых наблюдается первый ноль, т.е. определим корни уравнения Ф(ω)=0. Выражение (3.16) обращается в ноль при значениях аргумента синуса кратных π: , при n =±1.

Откуда и или . (3.17)

Из (3.17) следует, чем короче прямоугольный импульс, тем шире его спектр. В этом частном случае проявляется фундаментальное свойство преобразования Фурье: длительность сигнала и ширина его частотного спектра связаны обратно пропорциональной зависимостью.

 

Рисунок 3.6 – Амплитудный спектр прямоугольных импульсов

 

2) Дельта функция – δ (t) – это математическая (абстрактная) модель сигнала.

Аналитическое выражение

При этом

 

 

Рисунок 3.7 - Временное представление δ - функции

 

Спектральная плотность амплитуды: Ф(ω)=1. Дельта функция имеет сплошной бесконечно широкий спектр с постоянной спектральной плотностью.

Рисунок 3.8 - Спектральное представление δ -функции

 







Дата добавления: 2014-11-12; просмотров: 4437. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия