Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Частотный спектр непериодического сигнала





 

Рядом Фурье вида (3.3) или (3.12) могут быть представлены только периодические сигналы. Но строго периодических сигналов не бывает, т.к. сигналы имеют начало и конец, изменяют свою форму в связи с модуляцией, действием помех. Всякий непериодический сигнал (неповторяющийся, однократный) можно рассматривать как периодический, период которого равен , т.е. T0 → ∞.

 

Рисунок 3.4 - Непериодический сигнал

 

При увеличении периода T0 интервалы между частотами гармонических составляющих в спектре сигнала и амплитуды спектральных составляющих уменьшаются и в пределе, при T0 → ∞, становятся бесконечно малыми величинами (3.2). При этом ряд Фурье, представляющий спектральное разложение периодического сигнала, преобразуется в интеграл Фурье, отображающий спектральное разложение непериодического сигнала.

Рассмотрим, как произойдут эти изменения. Для этого в ряд Фурье (3.12) и в выражение (3.13) введем

,

Из выражения (3.2) следует, что 0 = k 2π / T 0 и превращается в текущее значение частоты при T 0→ ∞, т.е. 0ω, тогда пределом интеграла F является некоторая функция частоты:

(3.14)

Данная функция имеет смысл спектральной плотности комплексной амплитуды. Комплексные амплитуды при T =∞ становятся бесконечно малыми:

.

В связи с этим в выражении для ряда Фурье сумма может быть заменена интегралом Фурье. В результате получается прямое и обратное преобразование Фурье:

– для вычисления спектральной плотности амплитуды   (3.15)
– для восстановления исходного сигнала по спектру

 

Примеры непериодического сигнала:







Дата добавления: 2014-11-12; просмотров: 1818. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия