Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Частотный спектр непериодического сигнала





 

Рядом Фурье вида (3.3) или (3.12) могут быть представлены только периодические сигналы. Но строго периодических сигналов не бывает, т.к. сигналы имеют начало и конец, изменяют свою форму в связи с модуляцией, действием помех. Всякий непериодический сигнал (неповторяющийся, однократный) можно рассматривать как периодический, период которого равен , т.е. T0 → ∞.

 

Рисунок 3.4 - Непериодический сигнал

 

При увеличении периода T0 интервалы между частотами гармонических составляющих в спектре сигнала и амплитуды спектральных составляющих уменьшаются и в пределе, при T0 → ∞, становятся бесконечно малыми величинами (3.2). При этом ряд Фурье, представляющий спектральное разложение периодического сигнала, преобразуется в интеграл Фурье, отображающий спектральное разложение непериодического сигнала.

Рассмотрим, как произойдут эти изменения. Для этого в ряд Фурье (3.12) и в выражение (3.13) введем

,

Из выражения (3.2) следует, что 0 = k 2π / T 0 и превращается в текущее значение частоты при T 0→ ∞, т.е. 0ω, тогда пределом интеграла F является некоторая функция частоты:

(3.14)

Данная функция имеет смысл спектральной плотности комплексной амплитуды. Комплексные амплитуды при T =∞ становятся бесконечно малыми:

.

В связи с этим в выражении для ряда Фурье сумма может быть заменена интегралом Фурье. В результате получается прямое и обратное преобразование Фурье:

– для вычисления спектральной плотности амплитуды   (3.15)
– для восстановления исходного сигнала по спектру

 

Примеры непериодического сигнала:







Дата добавления: 2014-11-12; просмотров: 1818. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия