Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Энергия сигнала





 

На практике очень часто используются такие характеристики, как энергия и мощность сигнала. Если к резистору с сопротивлением R приложено постоянное напряжение U, то выделяющаяся в резисторе мощность будет равна

(3.18)

За время T в этом резисторе выделится тепловая энергия, равная

(3.19)

Пусть теперь к тому же резистору приложено не постоянное напряжение, а напряжение, описываемое сигналом S(t). Рассеивающаяся в резисторе мощность при этом тоже будет зависеть от времени. Тогда мгновенная мощность будет описываться выражением:

(3.20)

Чтобы вычислить выделяющуюся за время Т энергию, мгновенную мощность необходимо проинтегрировать в пределах интервала Т:

(3.21)

Можно ввести также понятие средней мощности за заданный промежуток времени, разделив энергию на длительность временного интервала:

(3.22)

Во все формулы входит сопротивление нагрузки R. Однако, если энергия и мощность интересуют нас не как физические величины, а как средство сравнения различных сигналов, этот параметр можно из формул исключить, приняв R =1 Ом. Тогда получим определение энергии, мгновенной мощности и средней мощности, принятые в теории сигналов:

(3.23)

фактически сигнал не производит работы и физически энергии нет, т.к. сигнал – это абстрактное понятие. Однако, формально, взяв квадрат от сигнала, мы говорим о мощности или об энергии сигнала, применяя формально эти характеристики к сигналу.

В теории передачи информации, практическое значение имеет равенство Парсеваля, формально описывающее закон сохранения энергии, применительно к сигналам при переходе от временного представления сигнала S(t) к частотному Ф(jω). Для получения равенства Парсеваля выполним следующее:

1) запишем выражение для энергии сигнала S(t) в виде:

;

2) выразим энергию через спектральную плотности амплитуд, т.е. используем обратное преобразование Фурье (3.17):

.

Поскольку S(t) не зависит от ω, то внесем S(t) во второй интеграл:

В результате получим равенство Парсеваля:

. (3.24)

Физический смысл: проявляется закон сохранения энергии сигнала. Энергия сигнала во временной области равна энергии спектра сигнала в частотной области.

Энергия сигнала может быть конечной или бесконечной. Например, любой сигнал конечной длительности будет иметь конечную энергию (если он не содержит дельта-функций или ветвей, уходящих в бесконечность). А периодический сигнал имеет бесконечную энергию. Если энергия сигнала бесконечна, то можно определить его среднюю мощность на всей временной оси. Для этого выполняется предельный переход, устремив интервал усреднения в бесконечность:

. (3.25)

Если взять квадратный корень из средней мощности, то это даст среднеквадратическое (действующее) значение или эффективное значение сигнала:

. (3.26)

 







Дата добавления: 2014-11-12; просмотров: 8684. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия