Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод Эйлера-Коши





Необходимо решить уравнение (101): . Проведем в точке касательную I к функции x(t) (рис. 88). Она пройдет под углом a. Пересечение касательной I с вертикалью ti+1 назовем промежуточной точкой xi*.

Если предположить, что функция x(t) проходит черезпромежуточную точку (xi*, ti+1), то в ней также можно построить касательную II к функции x(t). Касательная II пройдет под углом b.

Проведем через точку (xi*, ti+1) прямую III под углом g так, чтобы выполнялось равенство:

.

Через точку (xi, ti) проведем прямую IV параллельно прямой III. Она тоже пройдет под углом g. Точка пересечения прямой IV с вертикалью ti+1 представляет собой следующую искомую точку (xi+1, ti+1) функции x(t).

Осуществим вывод формулы для расчета функции x(t).

Согласно рис. 88:

,

где xi, xi+1 – текущая и последующая точки функции x(t) соответственно;

Δ x – приращение функции x(t) на интервале Δ t.

 


Рис. 88. Иллюстрация к методу Эйлера-Коши

Величину Δ x найдем из прямоугольного треугольника с углом g:

. (113)

При малых отклонениях углов a и b можно воспользоваться формулой:

. (114)

Согласно геометрическому смыслу первой производной функции:

,

. (115)

Согласно рис. 88:

, .

Величину Δ x* найдем из прямоугольного треугольника с углом a:

. (116)

Подставив все полученные значения в исходную формулу, получим формулу метода Эйлера-Коши:

. (117)

Пример. Для уравнения запишем формулу расчета функции x(t) согласно методу Эйлера-Коши







Дата добавления: 2014-11-12; просмотров: 685. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия