Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение обыкновенного дифференциального уравнения 1-го порядка с помощью функции rkfixed





Пусть имеется уравнение вида: .

Необходимо найти его решение на интервале [a, b] при начальном условии x(0)=x0.

В математическом редакторе Mathcad существует встроенная функция rkfixed, которая сама осуществляет решение методом Рунге-Кутта 4-го порядка. Использовать её необходимо следующим образом.

Сначала задаются параметры, которые будут передаваться в указанную функцию:

x0 вектор начальных условий, в данном случае вектор из одного элемента;

a, b границы интервала для поиска решения;

n– количество точек на интервале;

D(t, x) вектор-функция первых производных, в данном случае вектор из одного элемента.

Вызов функции осуществляется так:

rkfixed(x0, a, b, n, D)

 

Запрограммируем процесс решения.

1. Задаем начальное условие:

2. Вводим правую часть дифференциального уравнения:

В данном случае элемент x0 набирается с использованием кнопки Matrix®Subscript (Матрицы®Нижний индекс) или горячие клавиши Shift+] (или Shift+ъ при русской раскладке клавиатуры)

3. Задаем интервал поиска решения:

4. Задаем шаг дискретизации:

5. Задаем число точек дискретизации:

6. Осуществляем вызов функции и высвечивем результаты:

Матрица Z имеет 2 столбца и 40 строк. Первый столбец содержит переменную t, второй – переменную x. Решение дифференциального уравнения представлено на рис. 89.

Рис. 89. Решение уравнения на интервале [1, 5].







Дата добавления: 2014-11-12; просмотров: 635. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия