Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Модифицированный метод Эйлера





Необходимо решить уравнение (101): . Проведем в точке касательную I к функции x(t) (рис. 87).

Она пройдет под углом a. Разделим интервал дискретизации Δ t пополам с помощью точки ti+1/2. Точку пересечения касательной I с вертикалью ti+1/2 назовем промежуточной точкой xi*.

Если предположить, что функция x(t) проходит черезпромежуточную точку (xi*, ti+1/2), то в ней также можно построить касательную II к функции x(t). Касательная II пройдет под углом b.

Через точку (xi, ti) проведем прямую III параллельно прямой II. Она тоже пройдет под углом b.

Точка пересечения прямой III с вертикалью ti+1 представляет собой следующую искомую точку (xi+1, ti+1) функции x(t).

Осуществим вывод формулы для расчета функции x(t).

Рис. 87. Иллюстрация к модифицированному методу Эйлера

Согласно рис. 87:

,

где xi, xi+1 – текущая и последующая точки функции x(t) соответственно;

Δ x – приращение функции x(t) на интервале Δ t.

Величину Δ x найдем из прямоугольного треугольника с углом b:

. (106)

Согласно геометрическому смыслу первой производной функции:

, (107)

, (108)

. (109)

Величину Δ x* найдем из прямоугольного треугольника с углом a:

. (110)

Согласно геометрическому смыслу первой производной функции:

. (111)

Подставив все полученные значения в исходную формулу, получим формулу метода Эйлера модифицированного:

. (112)

Пример. Для уравнения запишем формулу расчета функции x(t) согласно модифицированному методу Эйлера:

.







Дата добавления: 2014-11-12; просмотров: 667. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия