Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод итераций. Запишем систему нелинейных уравнений:





Запишем систему нелинейных уравнений:

.

Приведем ее к нормальному виду:

. (100)

 
 

Рис. 80. Блок-схема решения методом Ньютона

Выберем грубые начальные приближения к решению х0, у0. Подставляя их в правую часть системы, можно получить некоторые новые приближения x1, у1. Повторяя вновь процесс подстановки найденных значений в первую часть системы (100), получим последовательность приближений.

Последовательность хi, уi будет сходиться к решению системы (89) при выполнении следующих условий сходимости.

Условия сходимости последовательности хi уi.

1. Если в замкнутой окрестности R имеется только один корень (действительный). Для двумерного случая замкнутая окрестность R определяется следующим соотношением (рис. 81):

 
 

Рис. 81. Окрестность R

Под корнем будем понимать вектор решений, который в двумерном случае имеет 2 компонента: х и у.

2. Функции f1 и j1 в области R должны быть непрерывны и дифференцируемы.

3. В области R выполняются следующие условия.

или

При выполнении всех трех условий последовательность хi, yi имеет предел, т. е. сходится, и этот предел является решением системы уравнений.

Начальные приближения должны выбираться в области R. Условием достижения заданной степени точности является выполнение следующих условий:

.

Блок-схема решения системы нелинейных уравнений методом итераций представлена на рис. 82.







Дата добавления: 2014-11-12; просмотров: 567. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия