Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Численное решение систем дифференциальных уравнений





Пусть имеется система обыкновенных дифференциальных уравнений 1-го порядка, записанная в нормальной форме Коши:

(136)

с начальными условиями , .

Численная схема решения системы уравнений (136) согласно методу Эйлера будет выглядеть:

(137)

где Dt – интервал дискретизации; – номер интервала; – количество интервалов; с начальными условиями , .

Численная схема решения системы уравнений (136) согласно модифицированному методу Эйлера будет выглядеть:

(138)

где xi*, yi*, ti* – промежуточные точки, рассчитываемые следующим образом:

,

,

.

Если подставить значения промежуточных точек в формулы (138), получим:

(139)

 

Численная схема решения системы уравнений (136) согласно методу Эйлера-Коши будет выглядеть:

(140)

где xi*, yi*, ti* – промежуточные точки, рассчитываемые следующим образом:

,

.

Если подставить значения промежуточных точек в формулы (140), получим:

 

(141)

Численная схема решения системы уравнений (136) согласно методу Рунге-Кутта 4-го порядка будет выглядеть:

(142)

где X 1 i, X 2 i, X 3 i, X 4 i, Y 1 i, Y 2 i, Y 3 i, Y 4 i – промежуточные точки, рассчитываемые следующим образом:

Пример. Имеется система нелинейных дифференциальных уравнений:

(143)

Задача: составить численные схемы решения системы уравнений (143).

Метод Эйлера.

(144)

Модифицированный метод Эйлера.

(145)

или

(146)

 

Метод Эйлера-Коши.

(147)

или

(148)

 

Метод Рунге-Кутта 4-го порядка.

 

(149)







Дата добавления: 2014-11-12; просмотров: 1144. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия