Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Численное решение систем дифференциальных уравнений





Пусть имеется система обыкновенных дифференциальных уравнений 1-го порядка, записанная в нормальной форме Коши:

(136)

с начальными условиями , .

Численная схема решения системы уравнений (136) согласно методу Эйлера будет выглядеть:

(137)

где Dt – интервал дискретизации; – номер интервала; – количество интервалов; с начальными условиями , .

Численная схема решения системы уравнений (136) согласно модифицированному методу Эйлера будет выглядеть:

(138)

где xi*, yi*, ti* – промежуточные точки, рассчитываемые следующим образом:

,

,

.

Если подставить значения промежуточных точек в формулы (138), получим:

(139)

 

Численная схема решения системы уравнений (136) согласно методу Эйлера-Коши будет выглядеть:

(140)

где xi*, yi*, ti* – промежуточные точки, рассчитываемые следующим образом:

,

.

Если подставить значения промежуточных точек в формулы (140), получим:

 

(141)

Численная схема решения системы уравнений (136) согласно методу Рунге-Кутта 4-го порядка будет выглядеть:

(142)

где X 1 i, X 2 i, X 3 i, X 4 i, Y 1 i, Y 2 i, Y 3 i, Y 4 i – промежуточные точки, рассчитываемые следующим образом:

Пример. Имеется система нелинейных дифференциальных уравнений:

(143)

Задача: составить численные схемы решения системы уравнений (143).

Метод Эйлера.

(144)

Модифицированный метод Эйлера.

(145)

или

(146)

 

Метод Эйлера-Коши.

(147)

или

(148)

 

Метод Рунге-Кутта 4-го порядка.

 

(149)







Дата добавления: 2014-11-12; просмотров: 1144. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия