Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Численное решение систем дифференциальных уравнений





Пусть имеется система обыкновенных дифференциальных уравнений 1-го порядка, записанная в нормальной форме Коши:

(136)

с начальными условиями , .

Численная схема решения системы уравнений (136) согласно методу Эйлера будет выглядеть:

(137)

где Dt – интервал дискретизации; – номер интервала; – количество интервалов; с начальными условиями , .

Численная схема решения системы уравнений (136) согласно модифицированному методу Эйлера будет выглядеть:

(138)

где xi*, yi*, ti* – промежуточные точки, рассчитываемые следующим образом:

,

,

.

Если подставить значения промежуточных точек в формулы (138), получим:

(139)

 

Численная схема решения системы уравнений (136) согласно методу Эйлера-Коши будет выглядеть:

(140)

где xi*, yi*, ti* – промежуточные точки, рассчитываемые следующим образом:

,

.

Если подставить значения промежуточных точек в формулы (140), получим:

 

(141)

Численная схема решения системы уравнений (136) согласно методу Рунге-Кутта 4-го порядка будет выглядеть:

(142)

где X 1 i, X 2 i, X 3 i, X 4 i, Y 1 i, Y 2 i, Y 3 i, Y 4 i – промежуточные точки, рассчитываемые следующим образом:

Пример. Имеется система нелинейных дифференциальных уравнений:

(143)

Задача: составить численные схемы решения системы уравнений (143).

Метод Эйлера.

(144)

Модифицированный метод Эйлера.

(145)

или

(146)

 

Метод Эйлера-Коши.

(147)

или

(148)

 

Метод Рунге-Кутта 4-го порядка.

 

(149)







Дата добавления: 2014-11-12; просмотров: 1144. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия