Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Численное решение систем дифференциальных уравнений





Пусть имеется система обыкновенных дифференциальных уравнений 1-го порядка, записанная в нормальной форме Коши:

(136)

с начальными условиями , .

Численная схема решения системы уравнений (136) согласно методу Эйлера будет выглядеть:

(137)

где Dt – интервал дискретизации; – номер интервала; – количество интервалов; с начальными условиями , .

Численная схема решения системы уравнений (136) согласно модифицированному методу Эйлера будет выглядеть:

(138)

где xi*, yi*, ti* – промежуточные точки, рассчитываемые следующим образом:

,

,

.

Если подставить значения промежуточных точек в формулы (138), получим:

(139)

 

Численная схема решения системы уравнений (136) согласно методу Эйлера-Коши будет выглядеть:

(140)

где xi*, yi*, ti* – промежуточные точки, рассчитываемые следующим образом:

,

.

Если подставить значения промежуточных точек в формулы (140), получим:

 

(141)

Численная схема решения системы уравнений (136) согласно методу Рунге-Кутта 4-го порядка будет выглядеть:

(142)

где X 1 i, X 2 i, X 3 i, X 4 i, Y 1 i, Y 2 i, Y 3 i, Y 4 i – промежуточные точки, рассчитываемые следующим образом:

Пример. Имеется система нелинейных дифференциальных уравнений:

(143)

Задача: составить численные схемы решения системы уравнений (143).

Метод Эйлера.

(144)

Модифицированный метод Эйлера.

(145)

или

(146)

 

Метод Эйлера-Коши.

(147)

или

(148)

 

Метод Рунге-Кутта 4-го порядка.

 

(149)







Дата добавления: 2014-11-12; просмотров: 1144. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия