Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

РАСПРЕДЕЛЕНИЕ НАПРЯЖЕНИЙ ОТ СОБСТВЕННОГО ВЕСА ГРУНТА





 

Напряжения от собственного веса грунта обычно называют природными (или «бытовыми») и существуют они всегда, независимо от застройки территории.

В грунтовом полупространстве, ограниченном сверху горизонтальной плоскостью z = 0, при горизонтальном напластовании грунтов можно считать, что напряжения зависят только от координаты z (глубины). Если в пределах толщины некоторого слоя грунта объемная масса γ постоянна, то вертикальные нормальные напряжения σ z будут увеличиваться с глубиной и равны

σ г = γ h. (55)

Горизонтальные и вертикальные площадки являются главными, а горизонтальные нормальные напряжения σ х и σ y равны между собой. Горизонтальные смещения отсутствуют.

Исходя из предположения о линейной деформируемости грунта, по закону Гука, в этом случае имеем:

 

σ z= ∑ γ i hi (56)

Частицы грунта, залегающие ниже уровня грунтовых вод, испытывают взвешивающее действие воды (силу Архимеда), поэтому формула (50) будет иметь вид:

 

σ г= ((γ s- γ w) /(1 +e))h, (57)

где γ s — удельный вес скелета грунта; γ w — удельный вес воды; е — коэффициент пористости.

По В.А. Флорину, взвешивание имеет место для всех водонасыщенных грунтов, за исключением плотных глин, играющих роль водоупора. В связи с этим эпюра давления σ z от собственного веса грунта на кровле водоупора имеет скачок (рис. 20), равный γ whв, где hв — расстояние от уровня грунтовых вод до кровли водоупора.

 
 

 


Рис. 20. Эпюра напряжений σ г от собственного веса грунта

 

Горизонтальные напряжения от собственного грунта (см. п.7) можно найти по формуле

 

σ x = γ h ξ = σ z ξ;, (58)

где ξ — коэффициент бокового давления.

 







Дата добавления: 2014-11-12; просмотров: 5721. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Studopedia.info - Студопедия - 2014-2024 год . (0.007 сек.) русская версия | украинская версия