Студопедия — Если признается истинность общего суждения (SаР либо SеР), то имеется возможность однозначно заключить о ложности либо истинности всех других суждений логического квадрата.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Если признается истинность общего суждения (SаР либо SеР), то имеется возможность однозначно заключить о ложности либо истинности всех других суждений логического квадрата.






*Признание ложности частного суждения (SiР либо SоР) позволяет однозначно заключить об истинности либо ложности всех других.

4.2.3.2. Обращение

Обращение – это умозаключение, при котором из данного суждения, не являющегося частноотрицательным, выводимо другое суждение, субъектом которого является предикат посылки, а предикатом – субъект посылки. Качество заключения остается тем же, что и у посылки. Что касается количества, то оно может изменяться. Все зависит от распределенности терминов: если термин был распределен в посылке, он может быть
распределен и в заключении; если же термин не распределен в посылке,
не может быть распределен в заключении. Сформулируем правила (схемы) обращения:

Правило простого обращения суждений типа SеР:

Если истинна посылка «Все S не суть Р», то истинно и заключение «Все Р не суть S». Правильность этой разновидности непосредственного вывода хорошо видна на схеме отношений терминов S и Р в посылке и заключении:

 

       
   


 

Приведем пример умозаключения, построенного на использовании данного правила:

1. Ни один равнодушный человек не является добрым

2. Ни один добрый человек не является равнодушным

В исходном суждении (посылке 1.) субъектом S является понятие «равнодушный человек», а предикатом Р – понятие «добрый» (человек). Заключение 2. является конверсией (обращением) посылки 1.: что было субъектом, стало предикатом, а то, что было предикатом, стало субъектом.

Правило простого обращения суждений типа SiР:

Если истинна посылка «Некоторые S суть Р», то истинно и заключение «Некоторые Р суть S»:

       
 
S  
 
P  


 


Пример:

1. Некоторые добрые люди – адвокаты

2. Некоторые адвокаты – добрые люди

Правило ограниченного обращения суждений типа S аР:

P  
Если истинна посылка «Все S суть Р», то истинно и заключение «Некоторые Р суть S»:

 


Пример:

1. Все адвокаты – образованные люди

2. Некоторые образованные люди – адвокаты

 

Из схемы видно, что более сильное утверждение Все образованные люди – адвокаты в качестве заключения рассматриваемого умозаключения было бы ошибочным. Отсюда и добавление к названию правила – ограниченное обращение.

Суждения типа SоР не могут быть обращены, поскольку, к примеру, из истинного суждения Некоторые люди не знают математики по этому методу выводится ложное суждение Некоторые из тех, кто знает математику, не являются людьми.

 

4.2.3.3. Превращение

Представляет собой вывод, в котором заключение получается из посылки посредством постановки на место предиката исходного суждения такого понятия, которое находится в отношении противоречия к этому предикату (было положительным, становится отрицательным, и наоборот), и при этом изменяется на противоположное качество суждения (положительное становится отрицательным, и наоборот). Сформулируем правила превращения:

Правило превращения суждений типа SаР:

Если истинна посылка «Все S суть Р», то истинно и заключение «Все S не суть не- Р». Пример:

1. Все жидкости – упруги

2. Ни одна жидкость не является неупругим веществом

Правило превращения суждений типа SеР:

Если истинна посылка «Все S не суть Р», то истинно и заключение «Все S суть не- Р». Пример:

1. Ни один интеллигент не является злодеем

2. Все интеллигенты – незлодеи

Правило превращения суждений типа SiР:

Если истинна посылка «Некоторые S суть Р», то истинным будет и заключение «Некоторые S не суть не- Р». Пример:

1. Некоторые студенты – спортсмены

2. Некоторые студенты не являются неспортсменами

Правило превращения суждений типа SоР:

Если истинна посылка «Некоторые S не суть Р», то истинно и заключение «Некоторые S суть не- Р». Пример:

1. Некоторые студенты не являются самолюбивыми

2. Некоторые студенты являются несамолюбивыми







Дата добавления: 2015-10-19; просмотров: 642. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия