Характеристическое сопротивление и коэффициент распространения симметричного четырехполюсника
В электросвязи широко используется режим работы симметричного четырехполюсника, при котором его входное сопротивление равно нагрузочному, т.е.
Это сопротивление обозначают как
называется режимом согласованной нагрузки. В указанном режиме для симметричного четырехполюсника
Разделив соотношение (13) на (14), получаем уравнение
решением которого является
С учетом (15) уравнения (13) и (14) приобретают вид
Таким образом,
где Одному неперу соответствует затухание по напряжению или току в е=2,718… раз, а по мощности, поскольку для рассматриваемого случая Запишем уравнение симметричного четырехполюсника с использованием коэффициента распространения. По определению
Тогда
Решая (17) и (18) относительно
Учитывая, что и
получаем уравнения четырехполюсника, записанные через гиперболические функции:
Литература
Контрольные вопросы и задачи
Ответ:
Определить параметры Т-образной схемы замещения. Ответ:
Определить, при каком сопротивлении нагрузки входное сопротивление четырехполюсника будет равно нагрузочному сопротивлению. Ответ: | |||||||||||
Лекция N 15. Электрические фильтры. |
Электрическим фильтром называется четырехполюсник, устанавливаемый между источником питания и нагрузкой и служащий для беспрепятственного (с малым затуханием) пропускания токов одних частот и задержки (или пропускания с большим затуханием) токов других частот.
Диапазон частот, пропускаемых фильтром без затухания (с малым затуханием), называется полосой пропусканияили полосой прозрачности;диапазон частот, пропускаемых с большим затуханием, называется полосой затуханияили полосой задерживания.Качество фильтра считается тем выше, чем ярче выражены его фильтрующие свойства, т.е. чем сильнее возрастает затухание в полосе задерживания.
В качестве пассивных фильтров обычно применяются четырехполюсники на основе катушек индуктивности и конденсаторов. Возможно также применение пассивных RC-фильтров, используемых при больших сопротивлениях нагрузки.
Фильтры применяются как в радиотехнике и технике связи, где имеют место токи достаточно высоких частот, так и в силовой электронике и электротехнике.
Для упрощения анализа будем считать, что фильтры составлены из идеальных катушек индуктивности и конденсаторов, т.е. элементов соответственно с нулевыми активными сопротивлением и проводимостью. Это допущение достаточно корректно при высоких частотах, когда индуктивные сопротивления катушек много больше их активных сопротивлений (![]() ![]() ![]() ![]()
В соответствии с материалом, изложенным в предыдущей лекции, если фильтр имеет нагрузку, сопротивление которой при всех частотах равно характеристическому, то напряжения и соответственно токи на его входе и выходе связаны соотношением
В идеальном случае в полосе пропускания (прозрачности) Рассмотрим схему простейшего низкочастотного фильтра,представленную на рис. 1,а. Связь коэффициентов четырехполюсника с параметрами элементов Т-образной схемы замещения определяется соотношениями (см. лекцию № 14) или конкретно для фильтра на рис. 1,а
Из уравнений четырехполюсника, записанных с использованием гиперболических функций (см. лекцию № 14), вытекает, что
Однако в соответствии с (2)
Поскольку в полосе пропускания частот коэффициент затухания
Так как пределы изменения
которому удовлетворяют частоты, лежащие в диапазоне
Для характеристического сопротивления фильтра на основании (3) и (4) имеем
Анализ соотношения (7) показывает, что с ростом частоты w в пределах, определяемых неравенством (6), характеристическое сопротивление фильтра уменьшается до нуля, оставаясь активным. Поскольку, при нагрузке фильтра сопротивлением, равным характеристическому, его входное сопротивление также будет равно
Следует отметить, что вне полосы пропускания
Так как вне полосы прозрачности В полосе задерживания коэффициент затухания Другим вариантом простейшего низкочастотного фильтра может служить четырехполюсник по схеме на рис. 1,б. Схема простейшего высокочастотного фильтра приведена на рис. 3,а. Для данного фильтра коэффициенты четырехполюсника определяются выражениями
Как и для рассмотренного выше случая, А – вещественная переменная. Поэтому на основании (9)
Данному неравенству удовлетворяет диапазон изменения частот
Характеристическое сопротивление фильтра
Вне области пропускания частот
при Качественный вид зависимостей Следует отметить, что другим примером простейшего высокочастотного фильтра может служить П-образный четырехполюсник на рис. 3,б. Полосовой фильтр формально получается путем последовательного соединения низкочастотного фильтра с полосой пропускания приведена на рис. 5,а, а на рис. 5,б представлены качественные зависимости У режекторного фильтра полоса прозрачности разделена на две части полосой затухания. Схема простейшего режекторного фильтра и качественные зависимости В заключение необходимо отметить, что для улучшения характеристик фильтров всех типов их целесообразно выполнять в виде цепной схемы, представляющей собой каскадно включенные четырехполюсники. При обеспечении согласованного режима работы всех n звеньев схемы коэффициент затухания
Литература
Контрольные вопросы и задачи
Ответ: | |||||||||||||||||||||||||||||||||||||||||
Лекция N 16. Трехфазные электрические цепи. |
Трехфазная цепь является частным случаем многофазных электрических систем, представляющих собой совокупность электрических цепей, в которых действуют ЭДС одинаковой частоты, сдвинутые по фазе относительно друг друга на определенный угол. Отметим, что обычно эти ЭДС, в первую очередь в силовой энергетике, синусоидальны. Однако, в современных электромеханических системах, где для управления исполнительными двигателями используются преобразователи частоты, система напряжений в общем случае является несинусоидальной. Каждую из частей многофазной системы, характеризующуюся одинаковым током, называют фазой,т.е. фаза – это участок цепи, относящийся к соответствующей обмотке генератора или трансформатора, линии и нагрузке.
Таким образом, понятие «фаза» имеет в электротехнике два различных значения:
![]() ![]() ![]() ![]()
Из несимметричных систем наибольший практический интерес представляет двухфазная система с 90-градусным сдвигом фаз (см. рис. 4). Все симметричные трех- и m-фазные (m>3) системы, а также двухфазная система являются уравновешенными. Это означает, что хотя в отдельных фазах мгновенная мощность пульсирует (см. рис. 5,а), изменяя за время одного периода не только величину, но в общем случае и знак, суммарная мгновенная мощность всех фаз остается величиной постоянной в течение всего периода синусоидальной ЭДС (см. рис. 5,б). Уравновешенность имеет важнейшее практическое значение. Если бы суммарная мгновенная мощность пульсировала, то на валу между турбиной и генератором действовал бы пульсирующий момент. Такая переменная механическая нагрузка вредно отражалась бы на энергогенерирующей установке, сокращая срок ее службы. Эти же соображения относятся и к многофазным электродвигателям. Если симметрия нарушается (двухфазная система Тесла в силу своей специфики в расчет не принимается), то нарушается и уравновешенность. Поэтому в энергетике строго следят за тем, чтобы нагрузка генератора оставалась симметричной.
|