Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Ортонормированная система векторов, ее свойства





Определение 3.5. Два вектора евклидового пространства называются ортогональными, если их скалярное произведение равно нулю:

.

Из определения скалярного произведения следует, что нулевой вектор ортогонален любому вектору .

Определение 3.6. Вектор называется ортогональным подпространству , если он ортогонален каждому вектору этого подпространства.

Если , то вектор ортогонален подпространству тогда и только тогда, когда .

Определение 3.7. Система векторов евклидова пространства называется ортогональной, если любые её два вектора ортогональны:

, , .

Теорема 3.5. Любая ортогональная система ненулевых векторов линейно независима.

□ Составим равенство

, (3.9)

где некоторые действительные числа. Умножив равенство (3.9) скалярно на вектор , на основании свойств скалярного произведения получим:

,

откуда

.

Так как , то равенство (3.9) примет вид

, (3.10)

Умножив равенство (3.10) скалярно на вектор , получим . И так далее. Окончательно получаем, что все коэффициенты равны нулю. Тогда по определению система ненулевых векторов линейно независима. ■

Теорема 3.6. Если ортогональная система векторов, то выполняется равенство

(3.11)

□ Вычислим скалярный квадрат вектора :

,

откуда и следует равенство (3.11). ■

Пусть далее – конечномерное () евклидово пространство.

Определение 3.8. Если базис евклидова пространства представляет собой ортогональную систему векторов:

, , ,

то он называется ортогональным базисом евклидова пространства .

Определение 3.9. Вектор называется единичным, если его евклидова норма равна единице:

.

Очевидно, что любой ненулевой вектор можно преобразовать в единичный вектор следующим образом:

.

При этом говорят, что вектор пронормирован, а число называют нормирующим множителем.

Определение 3.10. Ортогональный базис евклидова пространства называется ортонормированным, если каждый вектор () этого базиса – единичный, то есть

Использование ортонормированного базиса облегчает вычисление скалярного произведения в координатной форме. Пусть – ортонормированный базис и разложение векторов в этом базисе имеет вид

где координатные вектор-столбцы.

Матрица Грама для системы векторов в этом случае имеет вид

.

Тогда скалярное произведение (3.5) в ортонормированном базисе примет наиболее простой вид

. (3.12)

В ортонормированном базисе также упрощается вычисление координат вектора – они вычисляются через скалярные произведения. Если разложение вектора по ортонормированному базису имеет вид

,

то умножив обе части последнего равенства скалярно на (), получим

.

Тогда разложение вектора по ортонормированному базису будет иметь вид

.

 








Дата добавления: 2015-10-19; просмотров: 622. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия