ЯДЕРНЫЕ РЕАКЦИИ И ИХ ОСНОВНЫЕ ТИПЫ
Ядерные реакции - это превращения атомных ядер при взаимодействии с элементарными частицами (в том числе и с g-квантами) или друг с другом. Наиболее распространенным видом ядерной реакции является реакция, записываемая символически следующим образом: где Х и Y - исходное и конечное ядра, а и b - бомбардирующая и испускаемая (или испускаемые) в ядерной реакции частицы. В ядерной физике эффективность взаимодействия характеризуют эффективным сечением s. С каждым видом взаимодействия частицы с ядром связывают свое эффективное сечение: эффективное сечение рассеяния определяет процессы рассеяния, эффективное сечение поглощения - процессы поглощения. Эффективное сечение ядерной реакции где N - число частиц, падающих за единицу времени на единицу площади поперечного сечения вещества, имеющего в единице объема п ядер, dN - число этих частиц, вступающих в ядерную реакцию в слое толщиной дх. Эффективное сечение s имеет размерность площади и характеризует вероятность того, что при падении пучка частиц на вещество произойдет реакция. Единица эффективного сечения ядерных процессов - барн (1 барн =10-28 м 2). В любой ядерной реакции выполняются законы сохранения электрических зарядов и массовых чисел: сумма зарядов (массовых чисел) ядер и частиц, вступающих в ядерную реакцию, равна сумме зарядов (массовых чисел) конечных продуктов (ядер и частиц) реакции. Выполняются также законы сохранения энергии, импульса и момента импульса. В отличие от радиоактивного распада, который протекает всегда с выделением энергии, ядерные реакции могут быть как экзотермическими (с выделением энергии), так и эндотермическими (с поглощением энергии). Важную роль в объяснении механизма многих ядерных реакций сыграло предположение Н. Бора (1936) о том, что ядерные реакции протекают в две стадии по следующей схеме: Первая стадия - это захват ядром Х частицы а, приблизившейся к нему на расстояние действии ядерных сил (примерно 2 . 10-15 м), и образование промежуточного ядра С, называемого составным (или компаунд-ядром). Энергия влетевшей в ядро частицы быстро распределяется между нуклонами составного ядра, в результате чего оно оказывается в возбужденном состоянии. При столкновении нуклонов составного ядра один из нуклонов (или их комбинаций, например дейтрон - ядро тяжелого изотопа водорода - дейтерия, содержащее один протон и один нейтрон) или a-частица может получить энергию, достаточную для вылета из ядра. В результате возможна вторая стадия ядерной реакции - распад составного ядра на ядро Y и частицу b. В ядерной физике вводится характерное ядерное время - время, необходимое для пролета частицей расстояния порядка величины, равной диаметру ядра (d Если испущенная частица тождественна с захваченной ( Если же испущенная частица не тождественна с захваченной ( Некоторые реакции протекают без образования составного ядра, они называются прямыми ядерными взаимодействиями (например, реакции, вызываемые быстрыми нуклонами и дейтронами). Ядерные реакции классифицируются по следующим признакам: 1) по роду участвующих в них частиц - реакции под.действием нейтронов; реакции под действием заряженных частиц (например, протонов, дейтронов, a-частиц); реакции под действием g-квантов; 2) по энергии вызывающих их частиц - реакции при малых энергиях (порядка электрон-вольт), происходящие в основном с участием нейтронов; реакции при средних энергиях (до нескольких мегаэлектрон-вольт), происходящие с участием g-квантов и заряженных частиц (протоны, a-частицы); реакции при высоких энергиях (сотни и тысячи мегаэлектрон-вольт), приводящие к рождению отсутствующих в свободном состоянии элементарных частиц и имеющие большое значение для их изучения; 3) по роду участвующих в них ядер -реакции на легких ядрах (А <50); реакции на средних ядрах (50< А <100); реакции на тяжелых ядрах (А >100); 4) по характеру происходящих ядерных превращений - реакции с испусканием нейтронов; реакции с испусканием заряженных частиц; реакции захвата (в случае этих реакций составное ядро не испускает никаких частиц, а переходит в основное состояние, излучая один или несколько g-квантов). Первая в истории ядерная реакция осуществлена Э. Резерфордом (1919) при бомбардировке ядра азота a-частицами, испускаемыми радиоактивным источником: ПОЗИТРОН. b+-РАСПАД. ЭЛЕКТРОННЫЙ ЗАХВАТ П.Дираком было получено (1928) релятивистское волновое уравнение для электрона, которое позволило объяснить все основные свойства электрона, в том числе наличие у него спина и магнитного момента. Замечательной особенностью уравнения Дирака оказалось то, что из него для полной энергии свободного электрона получались не только положительные, но и отрицательные значения. Этот результат мог быть объяснен лишь предположением о существовании античастицы электрона - позитрона. Гипотеза Дирака, недоверчиво воспринимавшаяся большинством физиков, была блестяще подтверждена в 1932 г. К.Андерсоном (американский физик, Нобелевская премия 1936г.), обнаружившим позитрон в составе космического излучения. Существование позитронов было доказано наблюдением их треков в камере Вильсона, помещенной в магнитном поле. Эти частицы в камере отклонялись так, как отклоняется движущийся положительный заряд. Опыты показали, что позитрон Жолио-Кюри - Фредерик и Ирен, - бомбардируя различные ядра a-частицами (1934), обнаружили искусственно-радиоактивные ядра, испытывающие b--распад, а реакции на В, Аl и Mg привели к искусственно-радиоактивным ядрам, претерпевающим b+- распад, или позитронный распад: (Нобелевская премия 1956 г.) Наличие в этих реакциях позитронов доказано при изучении их треков в камере Вильсона, помещенной в магнитное поле. Таким образом, в экспериментах Жолио-Кюри, с одной стороны, открыта искусственная радиоактивность, а с другой - впервые обнаружен позитронный радиоактивный распад. Энергетический b+-спектр, как и b--спектр, непрерывен. b+ - Распад подчиняется следующему правилу смещения: Процесс b+-распада протекает так, как если бы один из протонов ядра превратился в нейтрон, испустив при этом позитрон и нейтрино: причем одновременный выброс нейтрино вытекает из тех же соображений, которые излагались при обсуждении b--распада. Так как масса покоя протона меньше, чем у нейтрона, то реакция для свободного протона наблюдаться не может. Однако для протона, связанного в ядре благодаря ядерному взаимодействию частиц, эта реакция оказывается энергетически возможной. Вскоре после опытов К.Андерсона, а также обоснования b+-распада было установлено, что позитроны могут рождаться при взаимодействии g-квантов большой энергии (Е g >1,02 MэB =2mec2) c веществом. Этот процесс идет по схеме Электронно-позитронные пары были действительно обнаружены в помещенной в магнитное поле камере Вильсона, в которой электрон и позитрон, имеющие противоположные по знаку заряды, отклонялись в противоположные стороны. Для выполнения этого соотношения помимо выполнения законов сохранения энергии и импульса необходимо, чтобы фотон обладал целым спином, равным 0 или 1, поскольку спины электрона и позитрона равны 1/2. Ряд экспериментов и теоретических выкладок привели к выводу, что спин фотона действительно равен 1 (в единицах При столкновении позитрона с электроном происходит их аннигиляция: в ее процессе электронно-позитронная пара превращается в два g-кванта, причем энергия пары переходит в энергию фотонов. Появление в этом процессе двух g-квантов следует из закона сохранения импульса и энергии. Реакция подтверждена прямыми экспериментами под руководством Л.А.Арцимовича. Процессы возникновения и превращения электронно-позитронных пар - являются примером взаимосвязи различных форм материи: в этих процессах материя в форме вещества превращается в материю в форме электромагнитного поля и наоборот. Для многих ядер превращение протона в нейтрон, помимо описанного процесса, происходит посредством электронного захвата, или е -захвата, при котором ядро спонтанно захватывает электрон с одной из внутренних оболочек атома (К, L и т.д.), испуская нейтрино: Необходимость появления нейтрино вытекает из закона сохранения спина. Схема е -захвата: т. е. один из протонов ядра превращается в нейтрон, заряд ядра убывает на единицу и оно смещается влево так же, как и при позитронном распаде. Электронный захват обнаруживается по сопровождающему его характеристическому рентгеновскому излучению, возникающему при заполнении образовавшихся вакансий в электронной оболочке атома (именно так е -захват и был открыт в 1937 г.). При е -захвате, кроме нейтрино, никакие другие частицы не вылетают, т. е. вся энергия распада уносится нейтрино. В этом е -захват (часто его называют третьим видом β-распада) существенно отличается от β
|