Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Прямая геодезическая засечка





Прямая геодезическая засечка применяется для определения координат дополнительной точки на основании двух исходных пунктов с известными координатами на местности, неудобной для производства линейных измерений. Для этого достаточно, установив теодолит последовательно на исходных пунктах 1 и 2 (рис. 12.1), измерить горизонтальные углы b1 и b2 между исходной стороной 1-2 и направлениями на определяемую точку Р.

Прямая засечка может быть использована также для привязки теодолитных или тахеометрических ходов к пунктам геодезической опорной сети, для чего необходимо измерить дополнительно примычной угол j1 (или j2) на определяемой точке.

Вычисление координат искомой точки может быть выполнено по формулам Юнга и Гаусса, не требующим предварительного решения треугольника. В этом случае должен соблюдаться определенный порядок нумерации исходных пунктов, отвечающих правилу: если встать в середине линии между исходными пунктами лицом к искомому пункту Р, то исходный пункт. Находящийся слева будет первым, а справа – вторым. Тогда координаты точки Р определятся по формулам котангенсов внутренних углов треугольника (формулам Юнга):

Рисунок 12.1 – Прямая геодезическая засечка

Координаты определяемой точки Р могут быть также получены по формулам тангенсов и котангенсов дирекционных углов (формулам Гаусса). Если значение одного из дирекционных углов будет близким к 00 или 1800, то вычисление координат точки Р удобно производить по формулам тангенсов дирекционных углов:

В случае, когда значение одного из дирекционных углов будет близким к 900 или 2700, вычисление по вышеуказанным формулам становится неудобным вследствие большой величины тангенса этого дирекционного угла. В этом случае выгодно пользоваться формулами котангенсов дирекционных углов:







Дата добавления: 2015-10-19; просмотров: 837. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия