Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Модуль, аргумент и тригонометрическая форма комплексного числа





Модулем комплексного числа называется неотрицательное действительное число r, вычисляемое по формуле

. (1)

Геометрически модуль комплексного числа — это длина радиус-вектора, изображающего число z, или полярный радиус точки (x; y), (рис. 79).

 

Аргумент комплексного числа z — это угол между положительным направлением действительной оси и вектором z (геометрически – это полярный угол точки (x; y)).

Обозначение ,причем или , (рис. 79).

Формула для вычисления аргумента комплексного числа имеет вид

Аргумент комплексного числа, (2)

причем, при определении угла по его тангенсу обязательно нужно учитывать, в какой четверти на комплексной плоскости расположено число z:

 

 

Замечание (к определению аргумента комплексного числа)

Значение , называют главным значением аргумента комплексного числа ; при этом значения всех возможных углов обозначают ; очевидно, что , .

 

Так как геометрически очевидно (рис. 79), что и , то

Тригонометрическая форма комплексного числа. (3)

Запись z = x + iy называется алгебраической формой комплексного числа z; запись z = r (cos j + i sin j) называется тригонометрической формой комплексного числа z, при этом .

Примеры (геометрическое изображение и тригонометрическая форма комплексных чисел)

Изобразим на комплексной плоскости следующие числа и запишем их в тригонометрической форме:

1) z = 1 + i Þ , Þ Þ ;
2) Þ , Þ Þ ;
3) Þ , Þ Þ ;
4) , ;
5) , ;   6) , то есть для z = 0 будет , j не определен.

 







Дата добавления: 2015-10-19; просмотров: 564. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия