Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Рациональные дроби





Рациональной дробью (рациональной функцией)называется функция, записанная как отношение двух целых многочленов:

, (2)

где , .

 

Например,

; ; .

Рациональная функция (2) называется правильной рациональной дробью, если степень многочлена в числителе меньше степени многочлена в знаменателе, то есть если , и называется неправильной рациональной дробью, если степень многочлена в числителе больше или равна степени многочлена в знаменателе, то есть если .

Например, в предыдущем примере: — правильная рациональная дробь,

и — это неправильные рациональные дроби.

Делением многочлена на многочлен «в столбик» любую неправильную рациональную дробь можно представить в виде суммы целого многочлена и правильной рациональной дроби. Эта процедура называется выделением целой части в неправильной рациональной дроби.

Примеры (выделение целой части в неправильной рациональной дроби)

1) , так как
2) , так как

Простейшими (элементарными) рациональными дробями называются следующие правильные дроби вида I-IV:

I. II. , k = 2, 3… III. , IV. , k = 2, 3,…
при этом D = b 2 – 4ac < 0, так что уравнение ax2 + bx + c = 0 не имеет корней на .

 

Справедливо следующее важное свойство правильных рациональных дробей.

Свойство (о разложении правильной рациональной дроби на сумму простейших дробей)
Любую правильную рациональную дробь можно единственным образом представить в виде суммы простейших дробей вида I, II, III, IV. Для этого нужно: 1) многочлен в знаменателе правильной рациональной дроби разложить на произведение линейных и квадратичных сомножителей с действительными коэффициентами;   2) записать простейшие дроби для каждого множителя знаменателя: для простого множителя записать дробь вида I: для кратного линейного множителя записать сумму дробей вида I и II:   для квадратичного множителя записать дробь вида III: ; для кратного квадратичного множителя записать сумму дробей вида III, IV: ;   3) неопределённые коэффициенты в числителях простейших дробей найти из условия тождественного равенства исходной дроби и записанной суммы простейших дробей.

 

Примеры (разложение правильных рациональных дробей на сумму
простейших дробей)

1)

2)

3)

4)

Вычислим неопределенные коэффициенты в разложениях 1) и 3):

1)

так как тождественно равны две дроби с одинаковыми знаменателями, то тождественно равны их числители:

1 º A(x + 3 ) + B(x – 2 ); (*)

вычисляем числа А и В, используя метод частных значений x, суть которого состоит в следующем: тождественное равенство двух многочленов относительно x означает, что равны значения этих многочленов при любых частных значениях x;
в рассматриваемом примере удобными частными значениями x являются x = 2 и x = -3. подставим эти значения x в последнее равенство (*):

при x = 2 получим

при x = – 3 получим

вычислив неопределенные коэффициенты, обязательно нужно делать проверку получившемуся разложению:

таким образом, неопределенные коэффициенты вычислены верно, и разложение правильной рациональной дроби на простейшие дроби имеет вид:

;

3)

для нахождения чисел А, В, С можно также использовать способ приравнивания коэффициентов при одинаковых степенях x, который основан на следующем свойстве целых многочленов: тождественное равенство двух многочленов означает совпадение их коэффициентов при одинаковых степенях x;

в рассматриваемом примере в последнем равенстве справа раскроем скобки и приведем подобные по x:

приравниваем коэффициенты при x 2:
приравниваем коэффициенты при x 1:
приравниваем коэффициенты при x 0:

в результате получилась система трёх линейных уравнений относительно трёх неизвестных А, В, С. Решаем эту систему:

таким образом, неопределенные коэффициенты вычислены. Подставляем их в искомое разложение и обязательно делаем проверку:

— верно.

Ответ:







Дата добавления: 2015-10-19; просмотров: 1154. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия