Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Монотонность и локальные экстремумы функции





Функция называется монотонно возрастающей функцией на промежутке , если любому большему значению аргумента из этого промежутка соответствует большее значение функции, (рис.52).

Рис.52

Функция называется монотонно убывающей функцией на промежутке , если любому большему значению аргумента из этого промежутка соответствует меньшее значение функции, (рис.53).

Рис.53  

 

Функция f (x) на промежутке называется монотонной функцией, если она на этом промежутке только монотонно возрастает или только монотонно убывает.

Точка называется точкой локального максимума функции, если значение функции в этой точке является наибольшим по сравнению с теми значениями, которые функция имеет во всех точках, достаточно близких к точке .

Максимумом функции называется значение функции в её точке локального максимума, (рис.54).

– точка локального максимума функции существует такая окрестность что при ;

Рис.54

 

Точка , называется точкой локального минимума функции, если значение функции в этой точке является наименьшим по сравнению с теми значениями, которые функция имеет во всех точках, достаточно близких к точке .

Минимумом функции называется значение функции в её точке локального минимума, (рис. 55). где - точка минимума.

 

– точка локального минимума функции существует такая окрестность что при ;

Рис.55

 

Локальные максимумы и минимумы функции называются локальными экстремумами функции. Функция может иметь на своей ООФ несколько локальных экстремумов (и даже бесконечно много). Локальные экстремумы могут быть только во внутренних точках ООФ, так как в их определении участвуют окрестности точек.

Если имеется график функции, то промежутки её монотонности и локальные экстремумы определяются визуально.

Например, рассмотрим функцию , заданную своим графиком и по графику охарактеризуем ее монотонность и экстремумы (рис.56):

Рис.56

 

ООФ: ;

;

;

.

 

Если функция задана аналитически и является непрерывной и дифференцируемой, то промежутки ее монотонности и локальные экстремумы можно найти с помощью необходимых и достаточных условий для этих характеристик, которые будут рассмотрены в теме «Дифференциальное исчисление функций одной переменной».

Замечание (к понятиям монотонности и локальных экстремумов)

Все определенные здесь понятия монотонности и локальных экстремумов функции предполагают строгие неравенства для значений функции, поэтому часто называются строгой монотонностью и строгими локальными экстремумами:

верно (или ) строго (или строго );

верно (или ) - точка строгого локального максимума (или строгого локального минимума).

В учебной литературе можно встретить определения аналогичных нестрогих понятий:

если , верно , то называется неубывающей функцией на промежутке , или нестрого возрастающей;

если , верно , то называется невозрастающей функцией на промежутке , или нестрого убывающей;

если верно (или ), то точка азывается точкой нестрогого локального экстремума функции f (x)(нестрогого максимума или нестрого минимума).

Далее по умолчанию будем понимать монотонность и экстремумы как строгие понятия.







Дата добавления: 2015-10-19; просмотров: 900. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия