Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Монотонность и локальные экстремумы функции





Функция называется монотонно возрастающей функцией на промежутке , если любому большему значению аргумента из этого промежутка соответствует большее значение функции, (рис.52).

Рис.52

Функция называется монотонно убывающей функцией на промежутке , если любому большему значению аргумента из этого промежутка соответствует меньшее значение функции, (рис.53).

Рис.53  

 

Функция f (x) на промежутке называется монотонной функцией, если она на этом промежутке только монотонно возрастает или только монотонно убывает.

Точка называется точкой локального максимума функции, если значение функции в этой точке является наибольшим по сравнению с теми значениями, которые функция имеет во всех точках, достаточно близких к точке .

Максимумом функции называется значение функции в её точке локального максимума, (рис.54).

– точка локального максимума функции существует такая окрестность что при ;

Рис.54

 

Точка , называется точкой локального минимума функции, если значение функции в этой точке является наименьшим по сравнению с теми значениями, которые функция имеет во всех точках, достаточно близких к точке .

Минимумом функции называется значение функции в её точке локального минимума, (рис. 55). где - точка минимума.

 

– точка локального минимума функции существует такая окрестность что при ;

Рис.55

 

Локальные максимумы и минимумы функции называются локальными экстремумами функции. Функция может иметь на своей ООФ несколько локальных экстремумов (и даже бесконечно много). Локальные экстремумы могут быть только во внутренних точках ООФ, так как в их определении участвуют окрестности точек.

Если имеется график функции, то промежутки её монотонности и локальные экстремумы определяются визуально.

Например, рассмотрим функцию , заданную своим графиком и по графику охарактеризуем ее монотонность и экстремумы (рис.56):

Рис.56

 

ООФ: ;

;

;

.

 

Если функция задана аналитически и является непрерывной и дифференцируемой, то промежутки ее монотонности и локальные экстремумы можно найти с помощью необходимых и достаточных условий для этих характеристик, которые будут рассмотрены в теме «Дифференциальное исчисление функций одной переменной».

Замечание (к понятиям монотонности и локальных экстремумов)

Все определенные здесь понятия монотонности и локальных экстремумов функции предполагают строгие неравенства для значений функции, поэтому часто называются строгой монотонностью и строгими локальными экстремумами:

верно (или ) строго (или строго );

верно (или ) - точка строгого локального максимума (или строгого локального минимума).

В учебной литературе можно встретить определения аналогичных нестрогих понятий:

если , верно , то называется неубывающей функцией на промежутке , или нестрого возрастающей;

если , верно , то называется невозрастающей функцией на промежутке , или нестрого убывающей;

если верно (или ), то точка азывается точкой нестрогого локального экстремума функции f (x)(нестрогого максимума или нестрого минимума).

Далее по умолчанию будем понимать монотонность и экстремумы как строгие понятия.







Дата добавления: 2015-10-19; просмотров: 900. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Studopedia.info - Студопедия - 2014-2026 год . (0.008 сек.) русская версия | украинская версия