Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение задачи о нахождении обратной функции





Постановка задачи

Для каждой из следующих функций найти обратную функцию . Построить графики обеих функций в одной системе координат, записать для каждой функции область определения и область значений:

1. ; 2. .

Решение

Строим график функции и проверяем биективность отображения множеств, описываемого этой функцией:

      графиком является часть квадратичной параболы типа , имеющей вершину в точке (-1;2); по графику определяем, что имеем биективное отображение , следовательно обратная функция существует.

Для нахождения обратной функции сначала разрешаем уравнение относительно x:

, где ;

получилась обратная функция в виде

.

Теперь в обратной функции переобозначаем аргумент на x, а

функцию на y:

, где ;

в результате получилась обратная функция в искомом виде:

.

y
y = f -1(x)

Строим графики обеих взаимно обратных функций и в одной системе координат и подтверждаем их симметричность относительно прямой y = x.

Ответ: если ,

то ;

, ; , .

 

2. ;

  так как отображение, задаваемое данной функцией, является биективным, то обратная функция существует.  

Выражаем x через y из равенства, задающего данную функцию:

;

переобозначим y на x, а x на y: ;

это и есть искомая обратная функция.

Строим графики обеих взаимно обратных функций в одной системе координат, подтверждаем их симметричность относительно прямой и записываем ответ.

 

Ответ: если ,

то ;

, ;

.







Дата добавления: 2015-10-19; просмотров: 919. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия