Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пример применения метода авторегрессии





 

Хотя уравнения авторегрессии AR (n) вычисляются и более эффективны для описания и прогнозирования стационарных процессов, данный метод также применим для нестационарных процессов, особенно, если не стационарность носит однородный характер.

На основе полученных в предыдущем примере данных при анализе PACF построим авторегрессионную модель AR (13). Для упрощения анализа сделаем допущение, что нарушена только одна предпосылка обычного метода наименьших квадратов – имеет место автокорреляция остатков высших порядков.

В данном случае воспользуемся встроенной в Gretl обобщённой процедурой Кохрейна-Оркотта (Generalizd Cochrane-Orcutt Iterative procedure) для оценки параметров модели AR (13). Для оценивания параметров с применением этого метода необходимо выбрать команду Model\Time series\Autoregressive estimation (рисунок 20).

 

Рисунок 20 – Построение модели авторегрессии

 

В открывшемся окне (рисунок 21) введём значения зависимой переменной (Dependent variable) – bezrob – при помощи кнопки Choose, перечислим лаги модели List of AR lags 1,2,12,13, которым cоответствуют значимые коэффициента частной автокорреляции (рассчитанные в предыдущем примере). В качестве объясняющих переменных введём лаговые значения зависимой переменной: bezrob-1, bezrob-2, bezrob-12, bezrob-13, нажав кнопку LAGS (рисунок 21). В появившемся окне флажками отметим опции Lags of dependent variable и Specific lags, введя лаги 1,2,12,13, нажмём кнопку ОК в обоих окнах.

 

Рисунок 21 – Спецификация авторегрессионной модели

По данным окна результатов моделирования (рисунок 22) отметим, что полученная модель является адекватной по F-критерию (p-value<0.05), влияние каждой лаговой переменной существенно по t-критерию (p-value<0.05) для уровня значимости 5%. Наличие больших значений лагов подтверждает существование выявленной ранее сезонной компоненты (длина цикла - год).

 

 

Рисунок 22 – Окно результатов моделирования с применением метода авторегрессии

Используем авторегрессионную модель для получения прогноза уровня безработицы в январе 2006 года. Для этого обратимся к команде Analysis\Forecasts окна результатов моделирования (рисунок 22). Выберем период 2006:1 и число наблюдений ряда 156 и нажмём кнопку ОК в открывшемся окне и получим прогнозное значение уровня безработицы 17.7878 (рисунок 23). Данный прогноз менее точен, чем полученный при прогнозировании с использованием модели полиномиального тренда четвёртого порядка, поскольку ряд не стационарен. Можно сделать вывод, что для случая нестационарных рядов данный метод необходимо сочетать с другими методами анализа, например с анализом тренда и т.д.

 

 

 

 

For 95% confidence intervals, t(137,.025) = 1.977

Obs наблюдение Bezrob уровень безработицы Prediction прогноз std. error Стандартная ошибка 95% confidence interval Доверительный интервал
2006:01 undefined 17.7878 0.277566 (17.2389, 18.3367)

 

Рисунок 23 – Прогнозирование временного ряда bezrob с использованием авторегрессионной модели







Дата добавления: 2015-10-19; просмотров: 756. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия