Различные уравнения прямой на плоскости(наклонной,через две точки, общее, каноническое,параметрическое).
Пусть прямая проходит через точку М0 (x0,y0) перпендикулярно вектору n = {A,B}. Тогда вектор , где М(х,у) – произвольная точка прямой, ортогонален n. Поэтому координаты любой точки данной прямой удовлетворяют уравнению А(х – х0) + В(у – у0) = 0 - уравнение прямой, проходящей через данную точку перпендикулярно данному вектору.Замечание. Вектор n называется нормалью к прямой. Преобразуем уравнение к виду: Ах + Ву + (-Ах0 – Ву0) = 0. Обозначив -Ах0 – Ву0 = С, получим общее уравнение прямой: Ах + Ву + С = 0. Получим теперь уравнение прямой, проходящей через точку М0 (x0,y0) параллельно вектору q = {l,m}. Так как вектор , где М(х,у) – произвольная точка прямой, коллинеарен q, координаты любой точки данной прямой удовлетворяют уравнению называемому каноническим уравнением прямой. Вектор q при этом называется направляющим вектором прямой. В частности, если прямая проходит через точки М1(х1,у1) и М2(х2,у2), ее направляющим вектором можно считать и из уравнения следует: уравнение прямой, проходящей через две заданные точки. Обозначив за t значения равных дробей, стоящих в левой и правой частях уравнения, можно преобразовать это уравнение к виду: x = x0 + lt, y = y0 + mt - параметрические уравнения прямой. Для прямой l, не параллельной оси Оу, можно ввести так называемый угловой коэффициент k – тангенс угла, образованного прямой и осью Ох, и записать уравнение прямой в виде: у = kx + b - уравнение прямой с угловым коэффициентом. Действительно, все точки прямой l1, параллельной l и проходящей через начало координат, удовлетворяют уравнению у = kх, а ординаты соответствующих точек на прямой l отличаются от них на постоянную величину b. Неполные уравнения прямой. Уравнение Ах + Ву + С = 0. называется полным, если коэффициенты А,В и С не равны нулю, и неполным, если хотя бы одно из этих чисел равно нулю. Рассмотрим возможные виды неполных уравнений прямой. 1) С = 0 - прямая Ах + Ву = 0 проходит через начало координат. 2) В = 0 - прямая Ах + С = 0 параллельна оси Оу (так как нормаль к прямой {A,0} перпендикулярна оси Оу). 3) А = 0 - прямая Ву + С = 0 параллельна оси Ох. 4) В=С=0 – уравнение Ах = 0 определяет ось Оу. 5) А=С=0 – уравнение Ву = 0 определяет ось Ох. Таким образом, прямая, задаваемая полным уравнением, не проходит через начало координат и не параллельна координатным осям. Преобразуем полное уравнение прямой следующим образом: Ах + Ву + С = 0 |:(-C), Где и равны величинам отрезков, отсекаемых прямой на осях Ох и Оу. Поэтому уравнение называют уравнением прямой в отрезках. 19. Пусть на плоскости зафиксирована прямоугольная декартоваHYPERLINK "http://www.cleverstudents.ru/cartesian_rectangular_coordinates.html" систему координат Oxy. Уравнение прямой в отрезках на плоскости в прямоугольной системе координат Oxy имеет вид , где a и b - некоторые отличные от нуля действительные числа. Уравнение прямой в отрезках не случайно получило такое название - абсолютные величины чисел a и b равны длинам отрезков, которые отсекает прямая на координатных осях Ox и Oy, считая от начала координат. Поясним этот момент. Мы знаем, что координаты любой точки прямой удовлетворяют уравнению этой прямой. Тогда отчетливо видно, что прямая, заданная уравнением прямой в отрезках, проходит через точки и , так как и . А точки и как раз расположены на координатных осях Ox и Oy соответственно и удаленны от начала координат на a и b единиц. Знаки чисел a и b указывают направление, в котором следует откладывать отрезки. Знак «+» означает, что отрезок откладывается в положительном направлении координатной оси, знак «-» означает обратное. Изобразим схематический чертеж, поясняющий все вышесказанное. На нем показано расположение прямых относительно фиксированной прямоугольной системы координат Oxy в зависимости от значений чисел a и b в уравнении прямой в отрезках. Теперь стало понятно, что уравнение прямой в отрезках позволяет легко производить построение этой прямой линии в прямоугольной системе координат Oxy. Чтобы построить прямую линию, которая задана уравнением прямой в отрезках вида , следует отметить в прямоугольной системе координат на плоскости точки и , после чего соединить их прямой линией с помощью линейки. Нормальное уравнение прямой – описание и пример. Выведем нормальное уравнение прямой. Пусть на плоскости зафиксирована прямоугольная декартоваHYPERLINK "http://www.cleverstudents.ru/cartesian_rectangular_coordinates.html" система координат Oxy. Зададим прямую в этой системе координат, указав точку, через которую она проходит, и нормальный вектор прямой. В качестве нормального вектора нашей прямой возьмем вектор единичной длины , с началом в точке O. Его координаты равны соответственно и , где и - углы между вектором и положительными направлениями координатных осей Ox и Oy соответственно, то есть, . В качестве точки, через которую проходит прямая, возьмем точку А и будем считать, что она находится на расстоянии p единиц () от точки O в положительном направлении вектора (при p = 0 точка А совпадает с началом координат), то есть, . Получим уравнение, которое задает эту прямую линию. Очевидно, что точка лежит на рассматриваемой прямой тогда и только тогда, когда числовая проекция вектора на направление вектора равна p, то есть, при условии . - радиус-вектор точки , следовательно, , что было показано в разделе координаты радиус-вектора точки. Тогда из определения скалярного HYPERLINK "http://www.cleverstudents.ru/scalar_product_of_vectors.html"произведения векторов мы получаем равенство , а это же скалярное произведение в координатной форме имеет вид . Следовательно, или . На этом вывод нормального уравнения прямой закончен. Полученное уравнение вида называют нормальным уравнением прямой или нормированным уравнением прямой. Уравнение также называют уравнением прямой в нормальном виде. Очевидно, нормальное уравнение прямой представляет собой общее уравнение прямой вида , в котором числа A и B таковы, что длина вектора равна единице, а число C неотрицательно. Из вывода нормального уравнения прямой виден его геометрический смысл: нормальное уравнение прямой вида задает в прямоугольной системе координат Oxy на плоскости прямую с нормальным вектором единичной длины расположенную на расстоянии p единиц от начала координат в положительном направлении вектора . Для примера приведем нормальное уравнение прямой . Оно в прямоугольной системе координат Oxy на плоскости задает прямую линию, нормальный вектор которой имеет координаты , и эта прямая удаленна от начала координат на 3 единицы в направлении, совпадающем с направлением нормального вектора .
20.
|