Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение вектора. Основные операции с векторами и определения.





• Так как и , то, вычисляя модули левой и правой частей уравнения, получим c учетом приведенных свойств:

и

т. е. один из корней уравнения .

и остальные 4 корня можно записать в виде

Таким образом, уравнение имеет 5 корней .

• Найдем мнимую часть уравнения:

Вычисление действительной части соответственно дает:

• Корни данного уравнения можно найти, пользуясь известной формулой корней квадратного уравнения, где . Тогда

Пример 1-8. Найти значение выражения , если подчиняется уравнению . Решение. Исходное уравнение можно преобразовать к виду . Корни этого уравнения определяются аналогично примеру 1-7 и . Показательная форма имеет соответственно вид . Тогда

 

 

Определение вектора. Основные операции с векторами и определения.

Определение вектор - упорядоченная пара точек пространства.

- Вектора называются коллинеарными а ║в, если прямые, которые через них проходят, параллельны.
- вектора называются прямоколлинеарными АВ ↑↑ CD, если точка А и С лежат по одну сторону от прямой, проходящей через B и D.
- вектора называются противоколлинеарными АВ ↑↓ CD, если точки А и С по разные стороны от прямой, проходящей через B и D.
Длина вектора - длина отрезка, определяющего вектор. Обозначается длина ׀а׀, │АВ│. Вектор а называется единичным, если ׀а׀ =1.
Два вектора называются равными, если они прямоколлинеарны и имеют одинаковую длину.
Векторы называются компланарны, если они параллельны одной плоскости.
Геометрический вектор - направленный отрезок. | AB |=| a | - длинна.
2 вектора наз. коллинеарными, если они лежат на 1 прямой или ||-ных прямых.
Векторы наз. компланарными, если они лежат в 1-ой плоскости или в ||-ных плоскостях.
2 вектора равны, когда они коллинеарны, сонаправленны, и имеют одинак-ую длину.

AB = CDPQ ; PREF ; GH
Действия над векторами
1) умножение на число: произведение вектора А на число l наз. такой вектор В, который обладает след. св-ми:
а) А || В.
б) l>0, то А ­­ В, l<0, то А ­¯ В.
в)l>1, то А < В,)l<1, то А > В
2) Разделить вектор на число n значит умножить его на число, обратное n: а /n= a *(1/n).
3) Суммой неск-их векторов а и в наз. соединяющий начало 1-го и конец последнего вектора.
4) Разностью векторов а и в наз-ся вектор c, который, будучи сложенным с вектором в даст вектор а.

Операции с векторами.
Сложение векторов:
Свойства операции сложения:
1 ) коммутативность а + b = b + a;

2 ) ассоциативность (a + b) + c = a + (b + c);
Из свойства ассоциативности следует, что в сумме векторов, содержащей три и более слагаемых, можно скобки не ставить.
a + b + c = a + (b + c)
a + b + c = (a + b)+ c

Разность ab

векторов а и b = вектору c который в сумме с вектором b
дает вектор а
3) а + 0 = а;
4) для любого вектора а существует противоположный вектор (-а), что а +(-а) = 0.
Умножение вектора на число
Произведение вектора a(a1; a2) на число λ называется вектор (λa1; λa2), т.е. (a1; a2) λ = (λa1; λa2).
Для любого вектора a и чисел λ, μ

Для любого вектора a и b и числа λ

 

Свойства умножения на число:
5 ) 1*а = а;
6) ассоциативность по умножению чисел
λ (µа) = (λµ) а, λ, µ є Ɍ;;
7) дистрибутивность по сложению чисел
(λ + µ) a = λa + µa, λ, µ є Ɍ;;
8) дистрибутивность по сложению векторов
λ(a + b) = λa + λb, λ є Ɍ;;
9) для любых векторов а и b существует такой вектор х, что а + х = b (называется разностью векторов а и b);
10 ) (-1) x a = - a.







Дата добавления: 2015-12-04; просмотров: 215. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия