Решение системы линейных уравнений с помощью определителей. Формулы Крамера.
Метод Крамера (правило Крамера) — способ решения квадратных систем линейных алгебраических уравнений с ненулевымопределителем основной матрицы (причём для таких уравнений решение существует и единственно). Назван по имени Габриэля Крамера (1704–1752), придумавшего метод. Описание метода Для системы линейных уравнений с неизвестными (над произвольным полем) с определителем матрицы системы , отличным от нуля, решение записывается в виде (i-ый столбец матрицы системы заменяется столбцом свободных членов). В этой форме формула Крамера справедлива без предположения, что отлично от нуля, не нужно даже, чтобы коэффициенты системы были бы элементами целостного кольца (определитель системы может быть даже делителем нуля в кольце коэффициентов). Можно также считать, что либо наборы и , либо набор состоят не из элементов кольца коэффициентов системы, а какого-нибудь модуля над этим кольцом. В этом виде формула Крамера используется, например, при доказательстве формулы для определителя Грама и Леммы Накаямы. Пример Система линейных уравнений: Определители:
Решение: Пример: Определители:
|