Билет 7
1. Базис и система координат на плоскости и в пр-ве Ответ: Базисом плоскости называется пара линейно независимых (неколлинеарных) векторов , взятых в определённом порядке, при этом любой вектор плоскости является линейной комбинацией базисных векторов. Любой вектор плоскости единственным образом раскладывается по базису : Также говорят, что вектор представлен в виде линейной комбинации базисных векторов. То есть, выражение называют разложением вектора по азису или линейной комбинацией базисных векторов. Иными словами, говоря о разложении по базису мы подразумеваем какие-то коэффициенты, которые соответствуют векторам.
1.1 Система координат на плоскости
Ответ: Когда говорят о прямоугольной системе координат, то чаще всего имеют в виду начало координат, координатные оси и размерность по осям. Прямоугольную систему координат вполне можно определить через ортонормированный базис . И это почти так. Формулировка звучит следующим образом: Точка плоскости, которая называется началом координат, и ортонормированный базис задают декартову прямоугольную систему координат плоскости. То есть, прямоугольная система координат однозначно определяется единственной точкой и двумя единичными ортогональными векторами . Думаю, всем понятно, что с помощью точки (начала координат) и ортонормированного базиса ЛЮБОЙ ТОЧКЕ плоскости и ЛЮБОМУ ВЕКТОРУ плоскости можно присвоить координаты. Образно говоря, «на плоскости всё можно пронумеровать». Обязаны ли координатные векторы быть единичными? Нет, они могут иметь произвольную ненулевую длину. Рассмотрим точку и два ортогональных вектора произвольной ненулевой длины. Собственно пример данной системы, всем известной:
1.2. Система координат в пр-ве Ответ: Базисом трёхмерного пространства называется тройка линейно независимых (некомпланарных) векторов , взятых в определённом порядке, при этом любой вектор пространства единственным образом раскладывается по данному базису , где – координаты вектора в данном базисе Напоминаю, также можно сказать, что вектор представлен в виде линейной комбинации базисных векторов. Понятие системы координат вводится точно так же, как и для плоского случая, достаточно одной точки и любых трёх линейно независимых векторов: Точка пространства, которая называется началом координат, и некомпланарны е векторы , взятые в определённом порядке, задают аффинную систему координат трёхмерного пространства:
Точка пространства, которая называется началом координат, и ортонормированный базис задают декартову прямоугольную систему координат пространства.: 2. Геометрические и алгебраические проекции вектора на ось
3. Координаты вектора на плоскости и в пространстве Начну с векторов на плоскости. Изображаем декартову с.к. и откладываем единичные вектора. Векторы и ортогональны. Ортогональны = Перпендикулярны. Обозначение: ортогональность векторов записывают привычным значком перпендикулярности, например: . Рассматриваемые векторы называют координатными векторами или ортами. Данные векторы образуют базис на плоскости. Иногда построенный базис называют ортонормированным базисом плоскости: «орто» – потому что координатные векторы ортогональны, прилагательное «нормированный» означает единичный, т.е. длины векторов базиса равны единице. Обозначение: базис обычно записывают в круглых скобках, внутри которых в строгой последовательности перечисляются базисные векторы, например: . Координатные векторы нельзя переставлять местами. Ответ: Любой вектор плоскости единственным образом выражается в виде:
|