Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Свойства линейно зависимых и линейно независимых векторов





 

1. Если в систему векторов входит нулевой вектор, то она линейно зависима

.

 

2. Если в системе векторов имеется два равных вектора, то она линейно зависима.

 

3. Если в системе векторов имеется два пропорциональных вектора , то она линейно зависима.

 

4. Система из векторов линейно зависима тогда и только тогда, когда хотя бы один из векторов есть линейная комбинация остальных.

 

5. Любые векторы, входящие в линейно независимую систему, образуют линейно независимую подсистему.

 

6. Система векторов, содержащая линейно зависимую подсистему, линейно зависима.

 

7. Если система векторов линейно независима, а после присоединения к ней вектора оказывается линейно зависимой, то вектор можно разложить по векторам , и притом единственным образом, т.е. коэффициенты разложения находятся однозначно.

 

 

Докажем, например, последнее свойство. Так как система векторов — линейно зависима, то существуют числа , не все равные 0, что. В этом равенстве . В самом деле, если , то . Значит, нетривиальная линейная комбинация векторов равна нулевому вектору, что противоречит линейной независимости системы . Следовательно, и тогда , т.е. вектор есть линейная комбинация векторов . Осталось показать единственность такого представления. Предположим противное. Пусть имеется два разложения и , причем не все коэффициенты разложений соответственно равны между собой (например, ).

 

Тогда из равенства получаем .

 

Следовательно, линейная комбинация векторов равна нулевому вектору. Так как не все ее коэффициенты равны нулю (по крайней мере ), то эта комбинация нетривиальная, что противоречит условию линейной независимости векторов . Полученное противоречие подтверждает единственность разложения.

 

 

Векторное пространство называется n -мерным, если в нем можно найти n линейно независимых векторов, но больше, чем n линейно независимых векторов оно не содержит.

Размерность пространства – это максимальное число содержащихся в нем линейно независимых векторов.

Пространство, имеющее конечную размерность, называется конечномерным. Пространство, в котором можно найти сколь угодно много линейно независимых векторов, называется бесконечномерным.

Совокупность n линейно независимых векторов n - мерного векторного пространства называется его базисом.

 

Если каждой паре векторов x, y линейного пространства L поставлено в соответствие действительное число (x, y), так, что для любых x, y и z из L и любого действительного числа α; справедливы следующие аксиомы:

(x, y) = (y, x),

(α;·x, y) = α;·(x, y),

(x + y, z) = (x, z) + (y, z),

(x, x) > 0 при x ≠ 0, (0, 0) = 0,

то в пространстве L определено скалярное произведение (x, y).

Если в линейном пространстве определено скалярное произведение, то такое пространство называется евклидовым пространством.

 

 

Теорема 1 (неравенство Коши-Буняковского)
Для любых чисел .
Доказательство
При неравенство верно. Допустим, . Докажем, что . Перепишем это неравенство, частично раскрыв скобки: . Легко заметить, что для того, чтобы доказать это неравенство, достаточно доказать Перенеся все слагаемые в одну сторону, и сгруппировав их, получаем очевидное неравенство: А это и доказывает неравенство Коши-Буняковского.
Определение 2
1. Число называется средним арифметическим чисел . 2. Если , то число называется средним геометрическим чисел .
Теорема 3 (неравенство Коши)
Пусть , тогда . (1)
Доказательство
Шаг первый: сначала индукцией докажем это неравенство для натуральных чисел вида . При m=1 надо доказать, что . Это неравенство эквивалентно , то есть . Последнее неравенство верно, значит, и первоначальное верно, так как они равносильны. Допустим, неравенство верно при m=k, то есть . (2) Докажем неравенство (1) для m=k+1, то есть докажем, что . В самом деле, . Итак, мы доказали неравенство Коши, когда количество чисел в средних есть степень двойки. А как быть с остальными? Для них мы докажем неравенство Коши, используя еще одну модификацию индукции – "индукцию вниз";. Допустим, что неравенство Коши верно для n=k, то есть допустим, что , (3) и докажем это неравенство для n=k-1. Для этого в неравенстве Коши положим , тогда (3) будет иметь вид: После элементарных алгебраических преобразований получили: . Сократим неравенство на второй множитель правой части: . И, наконец, возведем обе части неравенства в степень : . Неравенство Коши доказано полностью.

 








Дата добавления: 2015-12-04; просмотров: 238. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия