Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Точечные статистические оценки параметров распределения. Метод наибольшего правдоподобия для дискретного и непрерывного случаев. Примеры.





Метод max правдоподобия – выражает плоность вер-сти совместного появления результатов выборки х1, Х2,..., хn: L(x1, x2,…xi…xn; θ)=φ(x1,θ)*φ(x2,θ)…φ(xi,θ)…φ(xn, θ). Исследуем ф-я на max и min. Для этого исслед-ся ln (L(θ)). D lnL\dθ=0 – находим θ0; d^2lnL\dθ – если <0 – то max, тогда θ= θ0


22. Доверительные интервалы, доверительная вероятность. Построение доверительных интервалов для математического ожидания нормального распределения (с известной и неизвестной дисперсией).

Пусть x 1, x 2, , x n — выборка из некоторого распределения с плотностью распределения p (x; θ;), зависящей от параметра θ. Задача состоит в том, чтобы построить для θ доверительный интервал.

Опр: Интервал называется доверительным, если с вероятностью (1- α;) неизвестный параметр θ попадает в этот интервал. Тогда (1- α;) — доверительная вероятность.

Доверит. интервал для a при известном параметре σ.

Пусть x 1, x 2, , x n — выборка из N (a, σ;), причем a неизвестно, а σ известно.

Построитьдоверительный интервал для a при заданной доверительной вероятности (1- a).

Для решения задачи воспользуемся следующим фактом.

Пусть X1, X2, Xn, — независимые случайные величины, распределение которых нормально с параметрами a и σ. Тогда случайная величина нормальна с параметрами a и . Для обоснования этого утверждения достаточно вычислить плотность распределения . Статистика имеет нормальное распределение с параметрами (0,1)(стандартное нормальное распределение). Пусть квантиль порядка стандартного нормального распределения. Тогда , следовательно

. Таким образом статистики задаются равенствами , , и доверит. интервал для a построен.

Доверит. интервал для a при неизвестном параметре σ.

Пусть x 1, x 2, , x n — выборка из N (a, σ;), причем a и σ неизвестны.

Построитьдоверительный интервал для a при заданной доверительной вероятности (1- a).

,

Для решения воспользуемся теоремой: Пусть x 1, x 2, , x n — выборка из N (a, σ;), Статистика имеет распределение Стьюдента с (n - 1) степенью свободы. (Без доказательства)

Построим, пользуясь этой теоремой, доверительный интервал для a. Для этого прежде всего заметим, что плотность вероятности распределения Стьюдента с (n - 1) степенью свободы является четной и положительной функцией x. Поэтому, если квантиль распределения Стьюдента с (n - 1) степенью свободы порядка (то есть корень уравнения F (U) = , где F (U) — функция распределения Стьюдента с (n - 1) степенью свободы), то , следовательно,

,

.

Итак, , , и задача решена

23.

24.


25.Статистические гипотезы, постановка задачи построения критерия проверки статистической гипотезы. Уровень значимости и мощность критерия.

Статистическая гипотеза - любое предположение о виде или параметрах неизвестного з-на р-я. Различают простую и сложную статистич гипотезы.

Простая гипотеза, в отличие от сложной, полностью определяет теоретическую ф-ю р-я случ велич. Проверяемую гипотезу наз-тся нулевой (или основной) и обозначают Н0. Наряду с нулевой гипотезой рассматривают конкурирующую, гипотезу Н1, являющуюся логическим отрицанием Н0. Н0 и Н1 - две возможности выбора, осуществляемого в задачах проверки статистических гипотез. Суть проверки статистической гипотезы: находится характеристика θn – по выборке, θ критическое. Если θn>θкр – Н0 отвергается, наоборот – принимается. Вер-сть α допустить ошибку 1-го рода, т.е. отвергнуть гипотезу, когда она верна, называется уровнем значимости. Вер-сть допустить ошибку 2-го рода, т.е. принять гипотезу, когда она неверна, обычно обозначают β. Вер-сть (1-β) не допустить ошибку 2-го рода, т.е. отвергнуть гипотезу Н0, когда она неверна, наз-тся мощностьюкритерия.

В общем случае гипотезы подобного типа имеют вид

Но: θ=Δо, где θ - некоторый параметр исследуемого

распределения, а Δо - область его конкретных значений, состоящая в частном случае из одного значения. При проверке гипотезы указанного типа можно

использовать тот же подход, что при проверке статистич гипотез. Но: а=ао, против альтернативной Н1: а=а1>a0. Соответствующие критерии проверки гипотез о числовых значениях параметров нормального закона приведены в табл.

 







Дата добавления: 2015-12-04; просмотров: 267. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия