Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Функция распределения непрерывной случайной величины и ее свойства. Функции плотности распределения. Мода, медиана. Начальные и центральные моменты. Примеры.





Функция распределения НСВ:

, в качестве способа задания НСВ используется функция распределения НСВ.

ФРНСВ наз вер-ть т\ч она примет значение меньшее заданного. -обознач ф-ии распр в-тей

à

Основные свойства ф-ии распределения НСВ:

С1. С2.

С3.

С4. Вер-ть т\ч НСВ примет значение из интервала, равна приращению ф-ии на этом интервале

1)

2)

Скорость изменения функции распределения хар-ся плотностью распр-я. Обозначается символом . Плотностью вер-ти (плотностью распр-я) НСВ Х наз-ся производная её ф-ии распр-я

Свойства плотности распр-я (ПР):

С1. ПР – неотрицательная функция. ;

С2. Вер-ть попадания НСВ в интервал [a,b] равна определённому интегралу от её плотности вер-ти в пределах от a до b, т.е.

С3. Ф-я распр НСВ м\б выражена через плотность вер-ти по формуле:

С4. Несобственный интеграл в бесконечных пределах от плотности вер-ти НСВ =1.

Мода Мо(Х) случ. величины X - наз-ся ее наиболее вероятное значение (для которого вер-сть рi или плотность вер-сти φ(х) достигает max). Медиана Ме(Х) непрерывной случ. величины X наз-тся такое ее значение, для которого Р(X<Me(X))=P(X>Me(X))=0,5, т.е. вер-сть того, что X примет значение, < Ме(Х) или > ее, одна и та же и = 0,5. Геометрически: вертикальная прямая, проходящая через точку х=Ме(Х), делит площадь фигуры под кривой распределения на 2 равные части. Начальным моментом k-го порядка случ. велич X наз-ся мат. ожидание k-й степени этой величины: νk=M(X^k). Для непрерывн случ велич: νk=∫х^k φ(x)dx (интеграл от -∞ до +∞). Центральный моментом k-го порядка случ. велич. X наз-тся матю ожидание k-й степени отклонения X от ее мат. ожидания: μk=M[X-M(X)]^k. Для непрерывной случ велич: μk= ∫(х-М(Х))^k φ(x)dx (интеграл от -∞ до +∞).







Дата добавления: 2015-12-04; просмотров: 261. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия