Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Свойства математического ожидания и дисперсии дискретной случайной величины.





Матем ожиданием дискретной сл\в наз сумма произведений всех возможных значений сл\в на их вероятности.

Матем ожид сущ-т, если ряд, стоящий в правой части равенства, сходится абсолютно. С точки зрения вер-ти можно сказать, что матем ожид приближенно равно среднему арифм-му наблюд-х значений сл\в.

Свойства математического ожидания:

1) Мат ожид постоянной величины равно самой постоянной.

2) Постоянный множитель можно выносить за знак мат-го ожид.

3) Мат ожид произведения 2х независ-х сл\в-н = произведению их матем-х ож-й.

Это свойство справедливо для произвольного числа сл\в.

4) Мат ожид суммы 2х сл\в = сумме мат ожид-й слагаемых.

Это свойство также справедливо для произвольного числа сл\в.

Пусть производится п независимых испытаний, вероятность появления события А в которых равна р.

Теорема. Мат ожид М(Х) числа появления события А в п независимых испытаниях = произведению числа испытаний на вер-ть появления события в каждом испытании. Однако, мат ожид не может полностью характеризовать случайный процесс. Кроме мат-го ожид надо ввести величину, которая хар-т отклонение значений сл\в от мат-го ожидания.

Это отклонение равно разности между сл\в и ее мат-м ожид. При этом мат-е ожид отклонения = 0. Это объясняется тем, что одни возможные отклонения положительны, другие отрицательны, и в результате их взаимного погашения получается 0. Дисперсией (рассеиванием) дискретной сл\в наз мат ожид квадрата отклонения сл\в от ее мат ожид.

Теорема. Дисперсия равна разности между мат-м ожид квадрата сл\в Х и квадратом ее мат-го ожид.

Доказательство. С учетом того, что мат ожид М(Х) и квадрат мат-го ожид М2(Х) – величины постоянные, можно записать:

Свойства дисперсии

С1. Дисперсия постоянной величины равна нулю.

С2. Постоян множитель можно выносить за знак дисперсии, возводя его в квадрат.

С3. Дисперсия суммы 2х независимых сл\в = сумме дисперсий этих величин.

С4. Дисперсия разности 2х независимых сл\в = сумме дисперсий этих величин.

Справедливость этого равенства вытекает из свойства 2.

С5. Дисперсия = мат ожид квадрата сл\в без квадрата мат ожид.

Доказательство С5:

Использовние С5, значит-но упрощает процесс нахожд-я дисперсии по отнош-ю использ-я опр-я, поэтомк, в кач ф-лы нахожднеия дисперсии, использ-ся С5 дисперсии.

Теорема. Дисперсия числа появления события А в п независимых испытаний, в каждом из кот вер-ть р появления события постоянна, = произведению числа испытаний на вер-ти появления и не появления события в каждом испытании.

 

 







Дата добавления: 2015-12-04; просмотров: 224. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия