Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Средняя квадратическая взвешенная





= ; (1.5.14.)

где f - веса.

Формулы для расчета средней кубической аналогичны:

простая

= ; (1.5.15.)

Взвешенная

= . (1.5.16.)

Средние квадратическая и кубическая имеют ограниченное применение в практике статистики. Широко пользуется статистика средней квадратической, но не из самих вариантов х, и из их отклонений от средней (х - 1с) при расчете показателей вариации.

Средняя может быть вычислена не для всех, а для какой-либо части единиц совокупности. Примером такой средней может быть средняя прогрессивная как одна из частных средних, вычисляемая не для всех, а только для "лучших" (например, для показателей выше или ниже средних индивидуальных).

Особым видом средних величин являются структурные средние. Они применяются для изучения внутреннего строения и структуры рядов распределения значений признака. К таким показателям относятся мода и медиана.

Мода (Мо) – значение случайной величины, встречающееся с наибольшей вероятностью, в дискретном вариационном ряду это вариант, имеющий наибольшую частоту.

В интервальных рядах распределения мода вычисляется по формуле:

= + ; (1.5.17.)

где Хмо — нижняя граница модального интервала;

iмо — модальный интервал;

fмо, fмо+1, fмо-1 — частоты в модальном, предыдущем и следующем за модальным интервалах (соответственно).

Модальный интервал определяется по наибольшей частоте.

Мода широко используется в статистической практике при изучении покупательского спроса, регистрации цен и т.п.

Медиана (Me) — это вариант, который находится в середине вариационного ряда.

Медиана делит ряд на две равные (по числу единиц) части — со значениями признака меньше медианы и со значениями признака больше медианы. Чтобы найти медиану необходимо отыскать значение признака, которое находится в середине упорядоченного ряда. В ранжированных рядах несгруппированных данных нахождение медианы сводится к отысканию порядкового номера медианы.

В случае четного объема рада медиана равна средней из двух вариантов, находящихся в середине рада.

.

В интервальных рядах распределения медианное значение (поскольку оно делит всю совокупность на две равные по численности части) оказывается в каком-то из интервалов признака х. Этот интервал характерен тем, что его кумулятивная частота (накопленная сумма частот) равна или превышает полусумму всех частот ряда. Значение медианы вычисляется линейной интерполяцией по формуле:

Me = Xме + iме × (∑f/2 – Sме-1) / fме (1.5.18.)

где Xме – нижняя граница медианного интервала;

iме – медианный интервал;

∑f/2 – половина от общего числа наблюдений;

Sме-1 – сумма наблюдений, накопленная до начала медианного интервала;

fме – число наблюдений в медианном интервале.

Формула (5.3.14) получена исходя из допущения о равномерности нарастания накоплений частоты внутри интервала и пригодна для любого интервального ряда.

Медиана находит практическое применение в маркетинговой деятельности вследствие особого свойства — сумма абсолютных отклонений чисел ряда от медианы есть величина наименьшая:

∑(x – Me) min.

Мода и медиана в отличие от степенных средних являются конкретными характеристиками, их значение имеет какой-либо конкретный вариант в вариационном ряду.

Мода и медиана, как правило, отличаются от значения средней, совпадая с ней только в случае симметричного распределения частот вариационного рада. Поэтому соотношение моды, медианы и средней арифметической позволяет оценить ассиметрню ряда распределения.

Мода и медиана, как правило, являются дополнительными характеристиками совокупности и используются в математической статистике для анализа формы радов распределения.

Аналогично медиане вычисляются значения признака, делящие совокупность на четыре равные (по числу единиц) части – квартели, на пять равных частей – квинтели, на десять частей – децели, на сто частей – перцентели.

Использование в анализе вариационных рядов распределения, рассмотренных выше характеристик, позволяет более глубоко и детально охарактеризовать изучаемую совокупность.







Дата добавления: 2015-12-04; просмотров: 235. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия