Формы и виды связей
Связи между явлениями и их признаками классифицируют по степени тесноты связи, направлению и аналитическому выражению. Между различными явлениями и их признаками необходимо прежде всего выделить два типа связей: функциональную (жестко детерминированную) и статистическу ю (стохастически детерминированную). В соответствии с жестко детерминистическим представлением о функционировании экономических систем необходимость и закономерность однозначно проявляются в каждом отдельном явлении, т.е. любое действие вызывает строго определенный результат; случайными (непредвиденными заранее) воздействиями при этом пренебрегают. Поэтому при заданных начальных условиях состояние такой системы может быть определено с вероятностью, равной единице. Разновидностью такой закономерности является функциональная связь. Связь признака у с признаком х называется функциональной, если каждому возможному значению независимого признака х соответствует одно или несколько строго определенных значений зависимого признака у Определение функциональной связи может быть легко обобщено для случая многих признаков Характерной особенностью функциональных связей является то, что в каждом отдельном случае известен полный перечень факторов, определяющие значение зависимого (результативного) признака, а также точный механизм их влияния, выраженный определенным уравнением. Функциональную связь можно представить уравнением: (1.7.1.) где y1 — результативный признак (i=1,…,n); f(xi) известная функция связи результативного и факторного признаков; хi —факторный признак. Чаще всего функциональные связи наблюдаются в явлениях, описываемых математикой, физикой и другими точными науками. Имеют место функциональные связи и в социально-экономических процессах, но довольно редко (они отражают взаимосвязь только отдельных сторон сложных явлений общественной жизни). В экономике примером функциональной связи может служить связь между оплатой труда у и количеством изготовленных деталей х при простой сдельной оплате труда. Так, если расценка за одну деталь составляет 30 руб., то связь между признаками однозначно выразится простым линейным уравнением у=30х. Для каждого допустимого значения д: можно указать вполне определенное значение.у. Если, положим, х=5, то соответственно у=150. В реальной общественной жизни, ввиду неполноты информации жестко детерминированной системы, может возникнуть неопределенность, из-за которой эта система по своей природе должна рассматриваться как вероятностная, при этом связь между признаками становится стохастической. Стохастическая связь — это связь между величинами, при которой одна из них, случайная величина у, реагирует на изменение другой величины х или других величин x1, х2,...,xn (случайных или неслучайных) изменением закона распределения. Это обусловливается тем, что зависимая переменная (результативный признак), кроме рассматриваемых независимых, подвержена влиянию ряда неучтенных или неконтролируемых (случайных) факторов, а также некоторых неизбежных ошибок измерения переменных. Поскольку значения зависимой переменной подвержены случайному разбросу, они не могут быть предсказаны с достаточной точностью, а только указаны с определенной вероятностью. Характерной особенностью стохастических связей является то, что они проявляются во всей совокупности, а не в каждой ее единице. Причем не известен ни полный перечень факторов, определяющих значение результативного признака, ни точный механизм их функционирования и взаимодействия с результативным признаком. Всегда имеет место влияние случайного. Появляющиеся различные значения зависимой переменной — реализации случайной величины. Модель стохастической связи может быть представлена в общем виде уравнением , (1.7.2.) Где расчетное значение результативного признака; — часть результативного признака, сформировавшаяся под воздействием результативного признака, возникшая вследствие действия неконтролируемых или неучтенных факторов, а также измерения признаков неизбежно сопровождающегося некоторыми случайными ошибками. Проявление стохастических связей подвержено действию закона больших чисел: лишь в достаточно большом числе единиц индивидуальные особенности сгладятся, случайности взаимопогасятся и зависимость, если она имеет существенную силу, проявится достаточно отчетливо. В социально-экономической жизни приходится сталкиваться со многими явлениями, имеющими вероятностный характер. Например, уровень производительности труда рабочих стохастически связан с целым комплексом факторов: квалификацией, стажем работы, уровнем механизации и автоматизации производства, интенсивностью труда, простоями, состоянием здоровья работника, его настроением, атмосферным давлением и др. Полный перечень факторов неизвестен. Кроме того, неодинаково действие любого известного фактора на уровень производительности труда каждого рабочего. Изменение атмосферного давления, к примеру, значительно снижает работоспособность рабочих, страдающих заболеваниями сердечнососудистой системы, и практически не сказывается на производительности труда здоровых. В результате — при одинаковых возможностях наблюдается распределение значений дневной выработки рабочих. Такое распределение носит условный характер, поскольку оно связано с фиксированными значениями факторных признаков. Различия условных распределений, имеют выраженную направленность связи (например, выработка растет с повышением квалификации рабочего). Эту направленность связи можно раскрыть более наглядно, если ограничиться рассмотрением только одного аспекта стохастической связи — изучением вместо условных распределений лишь одного их параметра — условного математического ожидания (частные случаи стохастической связи — корреляционная и регрессионная). Корреляционная связь существует там, где взаимосвязанные явления характеризуются только случайными величинами. При такой связи среднее значение (математическое ожидание) случайной величины результативного признака у закономерно изменяется в зависимости от изменения другой величины jc или других случайных величин x1, х2,...,xn. Корреляционная связь проявляется не в каждом отдельном случае, а во всей совокупности в целом. Только при достаточно большом количестве случаев каждому значению случайного признака х будет соответствовать распределение средних значений случайного признака у. Наличие корреляционных связей присуще многим общественным явлениям. Известно, что увеличение количества внесенных удобрений ведет к повышению урожайности. Это справедливое положение, подтверждаемое в массе явлений, совсем не означает, что на отдельных одинаково удобренных участках будет одинаковая урожайность одной и той же сельскохозяйственной культуры. Вероятнее всего, уровни урожайности будут различаться. Кроме того, существует вероятность, что более высокая урожайность может наблюдаться на менее удобренных участках: на урожайность влияет не только количество внесенных в почву удобрений, но и другие, неучтенные факторы (качество семян, предшествующие культуры, рельеф местности, агротехника земледелия, сроки я качество посева и уборки). Но если в анализ включить достаточно большое число площадей, то обнаружится прямая корреляционная зависимость между количеством внесенных удобрений (в допустимых пределах) и средним уровнем урожайности. Значит, важная особенность корреляционных связей (как и других стохастических) состоит в том, что они обнаруживаются не в единичных случаях, а в массовых явлениях и требуют для своего исследования массовых наблюдений, т. е. статистических данных. Корреляционная связь — понятие более узкое, чем стохастическая связь. Последняя может отражаться не только в изменении средней величины, но и в вариации одного признака в зависимости от другого, т.е. любой другой характеристики вариации. Таким образом, корреляционная связь, является частным случаем стохастической связи. В зависимости от направления действия функциональные и стохастические связи могут быть прямыми и обратными. При прямой связи направление изменения результативного признака совпадает с направлением изменения признака-фактора, т.е. с увеличением факторного признака увеличивается и результативный, и наоборот, с уменьшением факторного признака уменьшается и результативный признак. В противном случае между рассматриваемыми величинами существуют обратные связи. Например, чем выше квалификация рабочего (разряд), тем выше уровень производительности труда— прямая связь. А чем выше производительность труда, тем ниже "себестоимость единицы продукции — обратная связь. По аналитическому выражению (форме) связи могут быть прямолинейными и криволинейными. При прямолинейной связи с возрастанием значения факторного признака происходит непрерывное возрастание (или убывание) значений результативного признака. Математически такая связь представляется уравнением прямой, а графически — прямой линией. Отсюда ее более короткое название — линейная связь. При криволинейных связях с возрастанием значения факторного признака возрастание (или убывание) результативного признака происходит неравномерно или же направление его изменения меняется на обратное. Геометрически такие связи представляются кривыми линиями (гиперболой, параболой и т. д.). По количеству факторов, действующих на результативный признак, связи различаются однофакторные (один фактор) и многофакторны е (два и более факторов). Однофахторные (простые) связи обычно называются парными (так как рассматривается пара признаков). Например, корреляционная связь между прибылью и производительностью труда. В случае многофакторной (множественной) связи имеют в виду, что все факторы действуют комплексно, т. е. одновременно и во взаимосвязи. Например, корреляционная связь между производительностью труда и уровнем организации труда, автоматизации производства, квалификации рабочих, производственным стажем, простоями и другими факторными признаками. С помощью множественной корреляции можно схватить весь комплекс факторных признаков и объективно отразить существующие множественные связи.любой другой характеристики вариации. Таким образом, корреляционная связь, является частным случаем стохастической связи.
|