Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Непараметрические методы





Применение корреляционного и регрессионного анализа требует, чтобы все признаки были количественно измеренными. Построение аналитических группировок предполагает, что количественным должен быть результативный признак. Параметрические методы основаны на использовании основных количественных параметров распределения (средних величин и дисперсий).

Вместе с тем в статистике применяются также непараметрические методы, с помощью которых устанавливается связь между качественными (атрибутивными) признаками. Сфера их применения шире, чем параметрических, поскольку не требуется соблюдения условия нормальности распределения зависимой переменной, однако при этом снижается глубина исследования связей. При изучении зависимости между качественными признаками не ставится задача представления ее уравнением. Здесь речь идет только об установлении наличия связи и измерении ее тесноты.

В практике статистических исследований приходится иногда анализировать связи между альтернативными признаками, представленными только группами с противоположными (взаимоисключающими) характеристиками. Тесноту связи в этом случае можно оценить, вычислив коэффициенты ассоциации и контингенции. Коэффициент ассоциации определяется по формуле

(1.7.29.)

Коэффициент контингенции определяется по формуле

(1.7.30.)

где a, b,c,d - частоты (число единиц).

Для расчета коэффициентов ассоциации и контингенции строится таблица, которая показывает связь между двумя явлениями, каждое из которых должно быть альтернативным, т.е. состоящим из двух качественно отличных друг от друга значений признака.

у х     Всего
  а c а+с
  b d b+d
Всего а+b c+d a+c+b+d

Коэффициенты ассоциации и контингенции изменяются от —1 до +1; чем ближе к +1 или -1, тем сильнее связаны между собой изучаемые признаки. Коэффициент контингенции всегда меньше коэффициента ассоциации. Связь считается подтвержденной,если К,>0,5 или К,>0,3.

Если по каждому из взаимосвязанных признаков выделяется число групп более двух, то для подобного рода таблиц теснота связи между качественными признаками может быть измерена с помощью показателей взаимной сопряженности Пирсона.

, где

1+ или

и Чупрова.

(1.7.31.)

где — число возможных значений первой статистической величины (число групп по столбцам); - число возможных значений второй статистической величины (число групп по строкам); - показатель взаимной сопряженности (определяется как сумма отношений квадратов частот клетки таблицы распределения к произведению итоговых частот соответствующего столбца и строки).

Вычтя из этой суммы единицу, получим .

Вспомогательная таблица для расчета коэффициентов взаимной сопряженности из трех групп имеет следующий вид:

 

y x       Всего
        nx
        nx
        nx
Итого ny ny ny n

 

Коэффициенты взаимной сопряженности Пирсона и Чупрова изменяются от 0 до 1, но уже при значении 0,3 можно говорить о тесной связи между вариацией изучаемых признаков.

В анализе социально - экономических явлений часто приходится прибегать к различным условным оценкам, например рангам, а взаимосвязь между признаками измерять с помощью непараметрических коэффициентов связи. Данные коэффициенты исчисляются при условии, что исследуемые признаки подчиняются различным законам распределения.

Ранжирование - это процедура упорядочения объектов изучения, которая выполняется на основе предпочтения.

Ранг - это порядковый номер значений признака, расположенных в порядке возрастания или убывания их величин. Если значения имеют одинаковую количественную оценку, то ранг всех этих значений принимается равным средней арифметической от соответствующих номеров мест, которые определяют. Такие ранги называются связанными К непараметрическим ранговым коэффициентам связи можно отнести коэффициент корреляции знаков Фехнера, коэффициент корреляции рангов Спирмена, ранговый коэффициент корреляции Кендалла,

Коэффициент корреляции знаков Фехнера основан на сопоставлении знаков отклонений от средней и подсчете числа случаев совпадения и несовпадения знаков, а не на сопоставлении попарно размеров отклонений индивидуальных значений факторного и результативного признаков от средней. Формула коэффициента корреляции знаков Фехнера

(1.7.32.)

где а число пар с одинаковыми знаками отклонений х и у от и ; -число пар с разными знаками отклонений х и у от

Коэффициент Фехнера колеблется в пределах от -1 до +1. Чем ближе коэффициент к 1, тем теснее связь. Если >0 связь прямая, если <0 связь обратная, если же =О связи нет.

Коэффициент корреляции рангов Спирмена исчисляется не по первичным данным, а по рангам (порядковым номерам),которые присваиваются всем значениям изучаемых признаков, расположенным в порядке предпочтительности. Если значения признаков совпадают, то определяется средний ранг. Коэффициент корреляции рангов Спирмена определяется по формуле:

(1.7.33.)

где - квадрат разности рангов для каждой единицы, d = Rx Ry; n-

число рангов; Коэффициент корреляции рангов также колеблется от -1 до + 1. Если ранги по обеим признакам совпадают, то 0, значит р=1 и связь полная прямая. Бели р=-1, то связь полная обратная. При р=0 связь отсутствует.

Коэффициент корреляции рангов Кендалла может также использоваться для измерения взаимосвязи между качественными и количественными признаками, ранжированными по одному принципу. Расчет рангового коэффициента Кендалла осуществляется по формуле;

(1.7.34.)

где n-число наблюдений; S-сумма, включающая два слагаемых Р и Q, т.е. S=P+Q. Для нахождения Р нужно установить, сколько чисел, находящихся после каждого из элементов последовательности рангов переменной у, имеют величину ранга, превышающую ранг рассматриваемого элемента. Суммируя эти числа получают значение Р, которое можно рассматривать как меру соответствия последовательности рангов переменной у последовательности переменной х. Второе слагаемое Q характеризует степень несоответствия последовательности рангов переменной у последовательности рангов переменной х. Чтобы подсчитать Q определяют сколько чисел после каждого из членов последовательности рангов переменной у имеет ранг меньше, чем у рассматриваемого. Такие величины берутся со знаком минус. Коэффициент корреляции рангов Кендалла основан на сравнении общего итога суммы положительных и отрицательных баллов (S=P=Q) с максимальным значением одного из слагаемых. Коэффициент Кендалла также изменяется от -1 до +1 и равен кулю при отсутствия связи.







Дата добавления: 2015-12-04; просмотров: 373. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия