Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Виды средних величин, способы расчета и их применение.





Средняя величина представляет собой обобщенную количественную характеристику пр-ка стат. совокупности в конкретных условиях места и времени. Форма средней вел-ны опр-ся прежде всего тем, какое св-во, какой параметр исходной варьирующей массы индивид значений признака должен сохран-ся неизменным.

Виды средних вел-н: Средняя арифметическая: простая:

где xi – индивидуальные значения признака (варианты); n – число единиц совокупности.

Простая средняя арифметическая применяется в тех случаях, когда имеются индивидуальные значения признака, т.е. данные не сгруппированы. Если данные представлены в виде рядов распределения или группировок, то средняя исчисляется с помощью весов.

Средняя арифметическая взвешенная имеет вид:

где xi – индивидуальные значения признака (варианты); fi – частота (вес), т.е. число единиц совокупности, обладающее одинаковым значением признака.

Данный вид средней арифметической взвешенной используется в дискретных рядах распределения.

Средняя квадратическая (сохраняется неизменной сумма квадратов исходных значений):

Если неизменной сохраняется сумма кубов индивидуальных значений признака при их замене на среднюю величину, используется средняя кубическая:

Если при замене индивидуальных величин признака на среднюю величину необходимо сохранить неизменным произведение индивидуальных величин, то следует применить геометрическую среднюю величину:

Основное применение средняя геометрическая находит при определении средних темпов роста.

Если по условию задачи необходимо, чтобы неизменной оставалась при осреднении сумма величин, обратных индивидуальным значениям признака, то средняя величина является гармонической средней:

Все рассмотренные виды средних величин принадлежат к общему типу степенных средних. Различаются они лишь показателем степени:

где k – показатель степени. При k = 1 получаем арифметическую среднюю, при k = 2 –квадратическую, при k = 3 – кубическую, при k = 0 – геометрическую, при k = –1 – гармоническую среднюю.

 

 







Дата добавления: 2015-12-04; просмотров: 222. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия