Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Элементы векторной алгебры и аналитической геометрии в пространстве





 

Векторные величины (векторы) – это такие величины, которые характеризуются не только своими числовыми значениями, но и направлением.

Для изображения векторных величин служат геометрические векторы. Геометрический вектор – это направленный отрезок.

Координатами вектора в прямоугольной системе координат называются проекции вектора на оси координат. Запись означает, что вектор имеет координаты .

Модуль вектора (его длина) вычисляется по формуле

.

Чтобы найти координаты вектора, заданного координатами точек его начала и конца надо найти разности соответствующих координат его конца и начала, т.е. если задан вектор , где , то

.

Тогда модуль вектора находится по формуле

.

Скалярным произведением двух векторов называется число, равное произведению их модулей на косинус угла между ними.

Обозначают: () или . По определению

, где .

Пусть векторы заданы аналитически:

.

Выражение скалярного произведения через координаты перемноженных векторов:

.

Косинус угла между двумя векторами можно найти по формуле

.

Векторным произведением вектора на вектор называется вектор, обозначаемый символом или , определяемый условиями:

1) модуль этого вектора равен произведению модулей перемножаемых векторов на синус угла между ними, т.е.

;

2) этот вектор перпендикулярен каждому из перемножаемых векторов, т.е. плоскости, определяемой этими векторами;

3) направлен по перпендикуляру к этой плоскости так, что векторы и составляют правую тройку (т.е. если при наблюдении с конца вектора кратчайший поворот от вектора к вектору происходит против часовой стрелки.)

 

Модуль векторного произведения численно равен площади параллелограмма, построенного на векторах сомножителях – в этом состоит геометрический смысл модуля векторного произведения:

.

Пусть даны два вектора и . Выражение векторного произведения через координаты перемножаемых векторов:

.

 

Смешанным произведением трех векторов называется число, равное скалярному произведению вектора на вектор , т.е. .

Если векторы заданы своими прямоугольными координатами , то их смешанное произведение вычисляется по формуле

.

Геометрический смысл смешанного произведения: объем параллелепипеда, построенного на 3-х некомпланарных векторах, равен абсолютной величине их смешанного произведения

.

Тогда объем треугольной пирамиды, построенной на этих же векторах, находится по формуле

.

Три точки пространства, не лежащие на одной прямой, определяют единственную плоскость. Если , три данные точки, не лежащие на одной прямой, а произвольная точка плоскости, то уравнение плоскости, проходящей через три точки, имеет вид

.

Уравнение прямой, проходящей через две точки пространства имеет вид

.

Угол между прямой и плоскостью находится по формуле

,

где коэффициенты выбирают из канонических уравнений прямой

и общего уравнения плоскости

,

где - вектор нормали к плоскости.

Условие перпендикулярности прямой и плоскости:

.

Пример

Даны вершины треугольной пирамиды Найти:

1) угол между ребрами и ;

2) площадь грани ;

3) объем пирамиды ;

4) длину высоты, опущенной из вершины на грань ;

5) угол между ребром и гранью ;

6) уравнение высоты, опущенной из вершины на грань .

 

 

Решение

А 4   А 2   В А 1 А 3 Рис. 2 1) Угол между ребрами и находим с помощью скалярного произведения векторов по формуле , найдем координаты векторов тогда косинус угла между векторами .

2) Площадь грани находим с помощью векторного произведения векторов. Найдем координаты вектора , тогда площадь треугольника находим по формуле

.

Найдем векторное произведение векторов

модуль векторного произведения равен

,

откуда находим площадь треугольника

3) Объем пирамиды находим с помощью смешанного произведения векторов по формуле

,

так как выше найдены координаты векторов

,

подставим координаты векторов в формулу, получим

.

4) Для нахождения длины высоты h, опущенной из вершины на грань применим формулу

,

откуда находим

 

 

5) Общее уравнение плоскости :

,

нормальный вектор плоскости .

Уравнение высоты : .

Условие перпендикулярности прямой и плоскости: .

В нашем случае , тогда уравнение высоты имеет вид

 







Дата добавления: 2015-12-04; просмотров: 226. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия