Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Ранг матрицы





 

Пусть дана матрица .

 

Рангом матрицы называется наибольший из порядков отличных от нуля ее миноров. Обозначение: rang A, r (А) или r.

Очевидно, – меньшее из чисел m и n.

Минор, порядок которого определяет ранг матрицы, называется базисным. Вычисление всех миноров отличных от нуля трудоемкая операция. На практике для вычисления r (A) используют метод Гаусса.

Элементарными преобразованиями называются следующие действия над матрицами:

1. Вычеркивание нулевой строки.

2. Умножение какой либо строки на число.

3. Прибавление к одной из строк другой строки, умноженной на любое число.

4. Перестановка двух столбцов или двух строк.

 

Теорема 1. Ранг матрицы не меняется при элементарных преобразованиях.

 

Рассмотрим матрицу специального вида

в которой все «диагональные элементы» отличны от нуля, а все элементы расположенные ниже диагональных, равны нулю. Такую матрицу будем называть трапециевидной. При r = n она будет треугольной.

 

Теорема 2. Ранг трапециевидной матрицы равен числу ее ненулевых строк.

 

Теорема 3. Всякую матрицу можно с помощью конечного числа элементарных преобразований привести к трапециевидному виду.

 

Метод Гаусса вычисления ранга матрицы состоит в приведении матрицы к трапециевидному виду и в подсчете ее ненулевых строк.

 







Дата добавления: 2015-12-04; просмотров: 200. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Studopedia.info - Студопедия - 2014-2026 год . (0.008 сек.) русская версия | украинская версия