Пример 3
. Замечание. Из рассмотренных примеров видно, что предел частного двух многочленов при равен отношению коэффициентов при старших членах, если степени многочленов, стоящих в числителе и знаменателе, равны; равен нулю, если степень числителя меньше степени знаменателя; равен ¥, если степень числителя больше степени знаменателя. 3.2. Раскрытие неопределенности вида Рассмотрим отношение функций . Пусть – бесконечно малые функции (б.м.ф.) при , отношение в этом случае называется неопределенным выражением вида . Чтобы раскрыть неопределенность вида , заданную отношением двух многочленов, надо в числителе и знаменателе выделить критический множитель и сократить на него. Чтобы раскрыть неопределенность вида , в которой числитель или знаменатель содержит иррациональность, следует избавиться от иррациональности, домножив числитель и знаменатель на сопряженное выражение.
Пример Вычислить предел . Решение При числитель и знаменатель дроби стремится к нулю, т.е. имеет место неопределенность вида . Для раскрытия неопределенности числитель и знаменатель дроби умножим на сопряженное знаменателю выражение, т.е. на сумму , а квадратный трехчлен разложим на множители, найдя для этого его корни: , тогда, . Таким образом, получим: .
|