Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Контрольная работа № 4. Интегральное исчисление функции одной переменной





4.1. Найти интеграл .

4.2. Найти интеграл .

4.3. Найти интеграл .

4.4. Построить схематический чертеж и найти площадь фигуры, ограниченной линиями:

, .

 

 

Краткие теоретические сведения для выполнения контрольной работы № 4 и решение типовых задач

 

Метод интегрирования подведением под знак дифференциала

 

Функция называется первообразной для функции на интервале , конечном или бесконечном, если в любой точке этого интервала функция дифференцируема и имеет производную .

Совокупность всех первообразных для функции , определенных на интервале , называется неопределенным интегралом от функции на этом интервале и обозначается символом

.

Метод подведения под знак дифференциала следует из свойства инвариантности неопределенного интеграла.

Пусть дан интеграл . Справедливо равенство

,

где – некоторая непрерывно дифференцируемая функция.

 

Таблица интегралов

1. 8.
2. 9.
3. 10.
4. 11.
5. 12.
6. 13.
7. 14.
15.

 

При интегрировании методом подведения под знак дифференциала необходимо иметь в виду следующие равенства:

 

В общем случае

.

Пример 1

Найти интеграл .

Так как , то

.

 

Пример 2

Найти интеграл .

Так как , то

.

 

Пример 3

Найти интеграл .

Так как , то

Пример 4

Найти интеграл .

Так как , то

.







Дата добавления: 2015-12-04; просмотров: 194. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия