Роль приборов в современном научном познании
Наблюдение и эксперимент и, пожалуй, вообще все методы современного научного познания связаны с использованием приборов. Дело в том, что наши природные познавательные способности, воплощенные как в чувственной, так и в рациональной форме, являются ограниченными, а поэтому в решении многих научных проблем — совершенно недостаточными. Разрешающая возможность, константность восприятия (громкости, размера, формы, яркости, цвета), объем восприятия, острота зрения, диапазон воспринимаемых стимулов, реактивность и другие характеристики деятельности наших органов чувств, как показывают психофизиологические исследования, вполне конкретны и конечны. Равным образом, конечны и наши речевые способности, наша память и наши мыслительные способности. В данном случае мы можем обосновать это утверждение посредством пусть грубых, приближенных, но тем не менее эмпирических данных, полученных с помощью тестов по определению так называемого коэффициента интеллекта (IQ). Таким образом, если воспользоваться словами одного из основателей кибернетики, английского ученого У. Р. Эшби, мы нуждаемся и в усилителях мыслительных способностей. Именно так можно определить роль приборов в научном познании. Приборы, во-первых, усиливают — в самом общем значении этого слова — имеющиеся у нас органы чувств, расширяя диапазон их действия в различных отношениях (чувствительность, реактивность, точность и т. д.). Во-вторых, они дополняют наши органы чувств новыми модальностями, предоставляя возможность воспринимать такие явления, которые мы без них осознанно не воспринимаем, например, магнитные поля. Наконец, компьютеры, представляющие собой особый вид приборов, позволяют нам на основе их использования совместно с другими приборами существенно обогатить и повысить эффективность названных двух функций. Кроме того, они позволяют также ввести совершенно новую функцию, связанную с экономией времени при получении, отборе, хранении и переработке информации и с автоматизацией некоторых мыслительных операций. Таким образом, в настоящее время никак нельзя недооценивать роль приборов в познании, считая их, так сказать, чем-то «вспомогательным». Причем это касается как эмпирического, так и теоретического уровней научного познания. И если уточнить, в чем заключается роль приборов, то можно сказать так: приборы представляют собой материализованный метод познания. В самом деле, всякий прибор основан на некотором принципе действия, а это и есть не что иное как метод, т. е. апробированный и систематизированный прием (или совокупность приемов), который благодаря усилиям разработчиков — конструкторов и технологов, удалось воплотить в особое устройство. И когда на том или ином этапе научного познания используются те или иные приборы, то это есть использование накопленного практического и познавательного опыта. При этом приборы расширяют границы той части реальности, которая доступна нашему познанию, — расширяют в самом общем значении этого слова, а не просто в смысле пространственно-временной области, называемой «лабораторией». Но, разумеется, роль приборов в познании нельзя и переоценивать — в том смысле, что их использование вообще устраняет какие бы то ни было ограничения познания или избавляет исследователя от ошибок. Это не так. Прежде всего, поскольку прибор служит материализованным методом, а никакой метод не может быть «безупречным», идеальным, безошибочным, постольку таковым является и всякий, пусть самый лучший, прибор. В нем всегда заложена инструментальная погрешность, причем здесь следует учесть не только погрешности соответствующего метода, воплощенного в принципе действия прибора, но и погрешности технологии изготовления. Далее, прибором пользуется исследователь, так что возможности совершения всех тех ошибок, на которые он только «способен», не будучи вооруженным приборами, в принципе, сохраняются, пусть и в несколько иной форме. Кроме того, при использовании приборов в познании возникают и специфические осложнения. Дело в том, что приборы неизбежно вносят в изучаемые явления определенные «возмущения». Например, нередко возникает такая ситуация, в которой теряется возможность одновременного фиксирования и измерения нескольких характеристик изучаемого явления. В этом отношении особенно показателен «принцип неопределенности» Гейзенберга в теории атома: чем точнее производится измерение координаты частицы, тем с меньшей точностью можно предсказать результат измерения ее импульса. Можно, скажем, точно определить импульс электрона (а значит, и его уровень энергии) на какой-нибудь его орбите, но при этом его местонахождение будет совершенно неопределенно. И заметим, дело здесь вовсе не в разуме, терпении или технике. Мысленно можно вообразить, что нам удалось построить «сверхмикроскоп» для наблюдения электрона. Будет ли тогда уверенность в том, что координаты и импульс электрона одновременно измеримы? Нет. В любом таком «сверхмикроскопе» должен использоваться тот или иной «свет»: чтобы мы могли «увидеть» электрон в таком «сверхмикроскопе», на электроне должен рассеяться хотя бы один квант «света». Однако столкновение электрона с этим квантом приводило бы к изменению движения электрона, вызывая непредсказуемое изменение его импульса (так называемый эффект Комптона). Такого же рода осложнения имеют место и в явлениях, изучаемых другими науками. Так, например, точное изображение ткани, получаемое с помощью электронного микроскопа, одновременно убивает эту ткань. Зоолог, который проводит опыты с живыми организмами, никогда не имеет дела с абсолютно здоровым, нормальным экземпляром, потому что сам акт экспериментирования и использование аппаратуры приводят к изменениям в организме и в поведении исследуемого существа. Те же осложнения — и у этнографа, пришедшего изучать «первобытное мышление», и в наблюдении, осуществляемом в социологии посредством опроса групп населения.
|