Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Логарифм гамма-функции находится по формуле





 

(7.4.13)

Логарифмические производные гамма-функции на основании (7.4.13) равны:

(7.4.14)

Для облегчения различных расчетов в Приложении 1 дана таблица значений функций при с шагом 0,01.

Точность приведенных формул тем выше, чем больше сумма х + n. Для приближенных расчетов на калькуляторе можно принять n =2, а при более точных расчетах на ПЭВМ – n =4.

Рассчитаем для разных типов распределений значения показателей при различных значениях параметров k, u. Далее в системе координат () отметим области для распределений разных типов (см. рис.7.4.1).

 
 

Рис. 7.4.1. Классификация распределений, заданных обобщенной плотностью , по критериям .


Как видно из рисунка, распределения II, II¢ типов представлены кривой, распределения IV типа – прямой . Распределения V типа лежат ниже прямой , а распределения I, I¢ типов – выше прямой

Симметричные распределения III типа с параметрами формы представлены отрезком оси ординат. С ростом параметра k распределения IIIс типа, а также II, II ¢ типов приближаются к нормальному закону, для которого .

В заключение отметим, что ниже прямой находится область распределений I типа, заданных плотностью (7.3.41) с параметром β=1.

Для быстрого установления типа выравнивающей кривой и нахождения оценок параметров k, u по методу моментов автором построена номограмма (Приложение 2). Она строилась для распределений с левосторонней асимметрией, у которых центральный момент 3-го порядка .

Если статистическое распределение имеет правостороннюю асимметрию (), то в случае распределений III-V типов вначале с помощью номограммы находятся оценки параметров u, k¢;, затем вычисляется оценка параметра k:

. (7.4.15)

Аналогично для распределений I типа (β=1) при вначале по номограмме находятся оценки параметров u¢, k ¢, затем вычисляются оценки параметров u, k:

. (7.4.16)

Построенная номограмма состоит из двух частей. Верхняя часть (выше прямой ) относится к распределениям с плотностью р(x) или к распределениям с плотностью p(t), p(y), которые приведены соответственно к форме .

Нижняя часть номограммы относится к распределениям I типа с плотностью p(t) при β=1 (т.е. типа 1.1) и является продолжением верхней части. Прямой при представлены распределения второго типа с параметром (гамма-распределения).

Это дает возможность расширить основные системы непрерывных распределений за счет включения в них распределений типов 1.1 и 2.1, которые относятся к дополнительным системам непрерывных распределений (с параметром β=1).

Тогда первая (основная) система непрерывных распределений SRN1 в общем случае будет включать три обобщенные плотности

(7.4.17)

Первая система непрерывных распределений включает две группы симметричных распределений: одна из них (типы IIIc-Vc) задана плотностью р(x) при k , другая (типы Ic-Vc) – плотностью р(t) при . Кроме того, симметричные распределения Ic типа описываются также плотностью р(t) с параметром сдвига l при ku = 1.

Первая система непрерывных распределений может быть также задана двумя плотностями (без последней) или даже одной плотностью р (x).

Аналогично во вторую основную систему непрерывных распределений SRN2 войдут обобщенные плотности

(7.4.18)

которые получены из первой системы как распределения функций случайных аргументов: Х=lnT - для первой плотности; T=lnY – для двух других плотностей.

Наконец, в третью основную систему непрерывных распределений SNR3 войдут обобщенные плотности

 

(7.4.19)

Вторая и третья основные системы непрерывных распределений также могут быть заданы либо двумя плотностями (без третьей), либо одной первой плотностью распределения.

Для нахождения оценок параметров трех основных систем непрерывных распределений по методу моментов автором созданы программы .

Номограмма, представленная в Приложении 2, остается справедливой для трех основных систем непрерывных распределений.

 







Дата добавления: 2015-12-04; просмотров: 255. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия