Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Логарифм гамма-функции находится по формуле





 

(7.4.13)

Логарифмические производные гамма-функции на основании (7.4.13) равны:

(7.4.14)

Для облегчения различных расчетов в Приложении 1 дана таблица значений функций при с шагом 0,01.

Точность приведенных формул тем выше, чем больше сумма х + n. Для приближенных расчетов на калькуляторе можно принять n =2, а при более точных расчетах на ПЭВМ – n =4.

Рассчитаем для разных типов распределений значения показателей при различных значениях параметров k, u. Далее в системе координат () отметим области для распределений разных типов (см. рис.7.4.1).

 
 

Рис. 7.4.1. Классификация распределений, заданных обобщенной плотностью , по критериям .


Как видно из рисунка, распределения II, II¢ типов представлены кривой, распределения IV типа – прямой . Распределения V типа лежат ниже прямой , а распределения I, I¢ типов – выше прямой

Симметричные распределения III типа с параметрами формы представлены отрезком оси ординат. С ростом параметра k распределения IIIс типа, а также II, II ¢ типов приближаются к нормальному закону, для которого .

В заключение отметим, что ниже прямой находится область распределений I типа, заданных плотностью (7.3.41) с параметром β=1.

Для быстрого установления типа выравнивающей кривой и нахождения оценок параметров k, u по методу моментов автором построена номограмма (Приложение 2). Она строилась для распределений с левосторонней асимметрией, у которых центральный момент 3-го порядка .

Если статистическое распределение имеет правостороннюю асимметрию (), то в случае распределений III-V типов вначале с помощью номограммы находятся оценки параметров u, k¢;, затем вычисляется оценка параметра k:

. (7.4.15)

Аналогично для распределений I типа (β=1) при вначале по номограмме находятся оценки параметров u¢, k ¢, затем вычисляются оценки параметров u, k:

. (7.4.16)

Построенная номограмма состоит из двух частей. Верхняя часть (выше прямой ) относится к распределениям с плотностью р(x) или к распределениям с плотностью p(t), p(y), которые приведены соответственно к форме .

Нижняя часть номограммы относится к распределениям I типа с плотностью p(t) при β=1 (т.е. типа 1.1) и является продолжением верхней части. Прямой при представлены распределения второго типа с параметром (гамма-распределения).

Это дает возможность расширить основные системы непрерывных распределений за счет включения в них распределений типов 1.1 и 2.1, которые относятся к дополнительным системам непрерывных распределений (с параметром β=1).

Тогда первая (основная) система непрерывных распределений SRN1 в общем случае будет включать три обобщенные плотности

(7.4.17)

Первая система непрерывных распределений включает две группы симметричных распределений: одна из них (типы IIIc-Vc) задана плотностью р(x) при k , другая (типы Ic-Vc) – плотностью р(t) при . Кроме того, симметричные распределения Ic типа описываются также плотностью р(t) с параметром сдвига l при ku = 1.

Первая система непрерывных распределений может быть также задана двумя плотностями (без последней) или даже одной плотностью р (x).

Аналогично во вторую основную систему непрерывных распределений SRN2 войдут обобщенные плотности

(7.4.18)

которые получены из первой системы как распределения функций случайных аргументов: Х=lnT - для первой плотности; T=lnY – для двух других плотностей.

Наконец, в третью основную систему непрерывных распределений SNR3 войдут обобщенные плотности

 

(7.4.19)

Вторая и третья основные системы непрерывных распределений также могут быть заданы либо двумя плотностями (без третьей), либо одной первой плотностью распределения.

Для нахождения оценок параметров трех основных систем непрерывных распределений по методу моментов автором созданы программы .

Номограмма, представленная в Приложении 2, остается справедливой для трех основных систем непрерывных распределений.

 







Дата добавления: 2015-12-04; просмотров: 255. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия