Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Центральная предельная теорема для трех систем непрерывных распределений





Используя теорию производящих функций, можно показать, что для первой системы непрерывных распределений, заданной обобщенной плотностью

,

моменты суммы n независимых одинаково распределенных случайных величин связаны с моментами случайной величины Хi формулами (7.4.33).

Производящая функция в этом случае есть

,

где t – вспомогательный параметр.

Выразим на основании формул (7.4.33) показатели асимметрии и островершинности распределения суммы n независимых одинаково распределенных случайных величин и через аналогичные показатели отдельной случайной величины Хi, т.е. и :

(7.4.34)

Из формул (7.4.34) немедленно следует центральная предельная теорема теории вероятностей (для первой системы непрерывных распределений):

распределение суммы n независимых одинаково распределенных случайных величин с ростом n приближается к нормальному закону

, (7.4.35)

для которого =0, =3. При этом на номограмме (Приложение 2) точка с координатами с ростом n перемещается по прямой от точки (, ) исходного распределения (случайной величины Хi) к точке (0,3) нормального закона, оценки параметров которого равны

. (7.4.36)

Формулы (7.4.33), (7.4.34) позволяют также переходить от распределения суммы n независимых одинаково распределенных случайных величин к распределению отдельной случайной величины Хi.

Полученные выше результаты остаются в силе и для обобщенной плотности

,

т.е. в случае второй системы непрерывных распределений, если ее привести к форме плотности р (х), т.е. представить в виде

.

Моменты случайной величины будут задаваться формулами

Формулировка центральной предельной теоремы несколько изменится: распределение суммы логарифмов n независимых одинаково распределенных случайных величин с ростом n приближается к нормальному закону, а произведение n случайных величин Т=Т 1 Т 2 …Тn – к логарифмически нормальному закону

, (7.4.37)

для которого =0, =3. Оценки параметров ν1(n), α задаются формулами (7.4.36).

И, наконец, в случае третьей системы непрерывных распределений, заданных обобщенной плотностью

,

полученные выше результаты остаются справедливыми, если ее также привести к форме плотности р (х), т.е. представить в виде

.

Тогда моменты случайной величины будут задаваться формулами

Центральная предельная теорема сформулируется в виде: распределение суммы двойных логарифмов n независимых одинаково распределенных случайных величин с ростом n приближается к нормальному закону, произведение – к логарифмически нормальному закону, а величина – к двойному логарифмически нормальному закону

, (7.4.38)

для которого =0, =3.

Здесь также оценки параметров n1(n) , α задаются формулами (7.4.36).







Дата добавления: 2015-12-04; просмотров: 219. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Studopedia.info - Студопедия - 2014-2026 год . (0.008 сек.) русская версия | украинская версия