Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Законы распределения среднего выборочного





Рассмотрим n случайных величин, распределенных по одному и тому же закону, заданному, например, обобщенной плотностью р(х) (или p(t), или р(у)).

Найдем закон распределения среднего выборочного , (или , или ) по заданному закону распределения случайной величины Х (или , или lnlnY).

Для решения этой задачи достаточно найти центральные моменты (2–4)-го порядков среднего арифметического n независимых одинаково распределенных случайных величин и вычислить показатели асимметрии и островершинности. Далее по универсальному или классическому методу моментов с помощью программы легко устанавливается тип искомого распределения и вычисляются оценки его параметров.

Известно, что математическое ожидание среднего арифметического n независимых случайных величин с одинаковыми средними равно среднему отдельной случайной величины

. (7.4.39)

Найдем далее центральные моменты выборочного среднего. Для этого вначале докажем, что постоянный множитель можно выносить за знак центрального момента r -го порядка, возведя его в r -ю степень:

. (7.4.40)

Действительно,

.

На основании (7.4.40) имеем:

.

Поскольку для n независимых одинаково распределенных случайных величин справедливо равенство (7.4.24)

,

то из предыдущего выражения получим

. (7.4.41)

Найдем центральный момент третьего порядка выборочного среднего. На основании равенства (7.4.40) можем записать

.

Поскольку (см. формулу (7.4.27)), то из предыдущего выражения получим

. (7.4.42)

Для центрального момента четвертого порядка среднего выборочного можем записать

.

Поскольку для суммы n независимых одинаково распределенных случайных величин справедливо равенство (7.4.32)

,

то из предыдущей формулы получим

. (7.4.43)

Таким образом, моменты среднего арифметического n независимых одинаково распределенных случайных величин выражаются через моменты отдельной случайной величины посредством формул

(7.4.44)

Из формул (7.4.33) и (7.4.44) найдем взаимосвязь между моментами суммы и среднего арифметического n независимых одинаково распределенных случайных величин:

(7.4.45)

Из (7.4.45) следует, что показатели асимметрии и островершинности для распределений суммы и среднего арифметического n независимых одинаково распределенных случайных величин одни и те же.

Зная центральные моменты, а также показатели асимметрии и островершинности, по универсальному или классическому методу моментов нетрудно найти закон распределения среднего арифметического и, следовательно, вычислить доверительные границы для среднего выборочного при заданной доверительной вероятности и любом заданном значении n. С ростом n распределение среднего выборочного (или , или ) приближается к нормальному закону (центральная предельная теорема в случае первой системы непрерывных распределений).

В случае второй системы - распределение среднего геометрического случайной величины Т

с ростом n приближается к логарифмически нормальному закону.







Дата добавления: 2015-12-04; просмотров: 524. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия