Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Законы распределения суммы независимых случайных величин





Системы непрерывных распределений, заданные обобщенными плотностями, а также методы оценивания параметров, доведенные до программной реализации, позволяют более просто решать различные задачи.

Пусть, например, требуется установить закон распределения суммы n независимых одинаково распределенных случайных величин Х=Х 1 2 +…+Хn. Среднее каждой случайной величины равно n1.

Распределение случайной величины Хi может быть задано как аналитически, так и таблично.

Поэтому для нахождения закона распределения суммы n независимых случайных величин, т.е. композиции n распределений, можно использовать общий метод.

Для этого достаточно вычислить моменты суммы n независимых случайных величин n1(n), μ2(n), μ3(n), μ4(n), а также показатели β1(n) и β2(n) по известным моментам случайной величины Хi.

Далее по методу моментов (универсальному или классическому) с помощью программы устанавливается тип выравнивающей кривой и находятся оценки параметров.

Пусть моменты случайной величины Хi известны. Обозначим их соответственно n1, μ2, μ3, μ4.

Тогда среднее суммы n независимых случайных величин будет равно

. (7.4.20)

Если случайные величины Хi равны и подчиняются одному и тому же закону распределения, то

. (7.4.21)

Найдем далее центральный момент второго порядка суммы n независимых одинаково распределенных случайных величин μ2(n).

Начнем с рассмотрения суммы двух независимых случайных величин:

,

где .

Обозначим для краткости . Тогда

.

Поскольку М(ху) = М(х)М(у), последнее выражение можно представить в виде

или

.

Но центральный момент первого порядка равен нулю. Поэтому второе слагаемое здесь равно нулю, и последняя формула примет вид

. (7.4.22)

На основании рассмотренного примера можно сформулировать следующее правило: при возведении в r -ю степень суммы случайных величин х = Х–mx; y=Y–my,… в итоге следует учесть только те члены, которые не содержат первых степеней сомножителей, так как их математические ожидания равны нулю.

Используя это правило, найдем центральный момент второго порядка суммы трех случайных величин

,

где х=Х–mx; y=Y–my; z=Z–mz.

Итак,

.

Здесь не записаны члены, математические ожидания которых равны нулю. Следовательно,

. (7.4.23)

В случае суммы n независимых одинаково распределенных случайных величин

. (7.4.24)

Найдем далее выражение для центрального момента третьего порядка суммы n независимых одинаково распределенных случайных величин.

Рассмотрим вначале сумму двух независимых случайных ве личин

,

откуда

. (7.4.25)

Аналогично для суммы трех случайных величин имеем

Остальные члены в квадратных скобках равны нулю.

Таким образом,

. (7.4.26)

Для суммы n независимых одинаково распределенных случайных величин

. (7.4.27)

И, наконец, найдем выражение для центрального момента четвертого порядка суммы n независимых одинаково распределенных случайных величин.

Начнем с суммы двух случайных величин

,

где по-прежнему . Итак,

Отсюда имеем

. (7.4.28)

Если Х=Y, то

. (7.4.29)

Найдем далее центральный момент четвертого порядка суммы трех случайных величин

откуда

(7.4.30)

Если Х=Y=Z, то

. (7.4.31)

На основании формул (7.4.29) и (7.4.31) можно записать общее выражение для центрального момента 4-го порядка суммы n независимых одинаково распределенных случайных величин.

. (7.4.32)

Действительно, произведение при n =2 равно 6, а при n =3 равно 18.

Таким образом, моменты суммы n независимых одинаково распределенных случайных величин ХХi равны

(7.4.33)

и легко вычисляются по моментам отдельной случайной величины Хi. Далее по известным моментам можно найти выравнивающее распределение суммы n независимых одинаково распределенных случайных величин.

При этом найденное выравнивающее распределение может совпадать с композицией законов распределения слагаемых (например, в случае n показательных законов), но может и не совпадать с ней (например, если случайные величины распределены по закону равномерной плотности). Это связано с тем, что моменты не определяют полностью распределения.







Дата добавления: 2015-12-04; просмотров: 232. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия