Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Симметричные распределения Ic-IIIc типов





Рассмотрим симметричные распределения Ic-IIIc типов, заданные плотностью

(7.3.43)

или в дифференциальной форме

.

Запишем последнее уравнение в виде

.

Умножим обе части полученного равенства на tr и проинтегрируем на бесконечном интервале. В результате получим

. (7.3.44)

При r =1 и r =3 из (7.3.44) найдем

, (7.3.45)

. (7.3.46)

Тогда показатель островершинности будет равен

. (7.3.47)

Последняя формула совпадает с формулой (7.3.14). Величина в зависимости от типа распределения принимает значения (при u >–2/3, или ): - для Ic типа; =3 – для IIc типа (нормального закона); >3 – для IIIc типа.

Отсюда следует, что показатели могут служить критериями для различения распределений Ic-IIIc типов.

Выразим параметры симметричных распределений Iс-IIIc типов через их центральные моменты.

В случае нормального закона (тип IIc) оценка параметра α равна

. (7.3.48)

Оценки параметров α, u распределений Ic, IIIc типов равны

, (7.3.49)

 

, (7.3.50)

при этом остается также справедливой общая формула

, (7.3.51)

полученная ранее для распределений I-III, I¢, II¢ типов при .

Действительно, поскольку для симметричных распределений показатель , то на основании (7.3.8) имеем:

.

Тогда формула (7.3.51) в этом частном случае примет вид

,

что совпадает с (7.3.50).

Таким образом, показатели L, u могут служить критериями для классификации как симметричных распределений с параметрами , так и других распределений I-III, I¢, II¢ типов с параметром .







Дата добавления: 2015-12-04; просмотров: 210. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Studopedia.info - Студопедия - 2014-2026 год . (0.016 сек.) русская версия | украинская версия