Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Симметричные распределения Ic-IIIc типов





Рассмотрим симметричные распределения Ic-IIIc типов, заданные плотностью

(7.3.43)

или в дифференциальной форме

.

Запишем последнее уравнение в виде

.

Умножим обе части полученного равенства на tr и проинтегрируем на бесконечном интервале. В результате получим

. (7.3.44)

При r =1 и r =3 из (7.3.44) найдем

, (7.3.45)

. (7.3.46)

Тогда показатель островершинности будет равен

. (7.3.47)

Последняя формула совпадает с формулой (7.3.14). Величина в зависимости от типа распределения принимает значения (при u >–2/3, или ): - для Ic типа; =3 – для IIc типа (нормального закона); >3 – для IIIc типа.

Отсюда следует, что показатели могут служить критериями для различения распределений Ic-IIIc типов.

Выразим параметры симметричных распределений Iс-IIIc типов через их центральные моменты.

В случае нормального закона (тип IIc) оценка параметра α равна

. (7.3.48)

Оценки параметров α, u распределений Ic, IIIc типов равны

, (7.3.49)

 

, (7.3.50)

при этом остается также справедливой общая формула

, (7.3.51)

полученная ранее для распределений I-III, I¢, II¢ типов при .

Действительно, поскольку для симметричных распределений показатель , то на основании (7.3.8) имеем:

.

Тогда формула (7.3.51) в этом частном случае примет вид

,

что совпадает с (7.3.50).

Таким образом, показатели L, u могут служить критериями для классификации как симметричных распределений с параметрами , так и других распределений I-III, I¢, II¢ типов с параметром .







Дата добавления: 2015-12-04; просмотров: 210. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия