Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Симметричные распределения Ic-IIIc типов





Рассмотрим симметричные распределения Ic-IIIc типов, заданные плотностью

(7.3.43)

или в дифференциальной форме

.

Запишем последнее уравнение в виде

.

Умножим обе части полученного равенства на tr и проинтегрируем на бесконечном интервале. В результате получим

. (7.3.44)

При r =1 и r =3 из (7.3.44) найдем

, (7.3.45)

. (7.3.46)

Тогда показатель островершинности будет равен

. (7.3.47)

Последняя формула совпадает с формулой (7.3.14). Величина в зависимости от типа распределения принимает значения (при u >–2/3, или ): - для Ic типа; =3 – для IIc типа (нормального закона); >3 – для IIIc типа.

Отсюда следует, что показатели могут служить критериями для различения распределений Ic-IIIc типов.

Выразим параметры симметричных распределений Iс-IIIc типов через их центральные моменты.

В случае нормального закона (тип IIc) оценка параметра α равна

. (7.3.48)

Оценки параметров α, u распределений Ic, IIIc типов равны

, (7.3.49)

 

, (7.3.50)

при этом остается также справедливой общая формула

, (7.3.51)

полученная ранее для распределений I-III, I¢, II¢ типов при .

Действительно, поскольку для симметричных распределений показатель , то на основании (7.3.8) имеем:

.

Тогда формула (7.3.51) в этом частном случае примет вид

,

что совпадает с (7.3.50).

Таким образом, показатели L, u могут служить критериями для классификации как симметричных распределений с параметрами , так и других распределений I-III, I¢, II¢ типов с параметром .







Дата добавления: 2015-12-04; просмотров: 210. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия