Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод наименьших квадратов





Этим методом могут быть найдены оценки параметров распределений группы А.

Рассмотрим распределения I – III типов группы А. Преобразуем функцию распределения

к уравнению прямой

. (7.1.1)

Построив по эмпирической функции распределения график зависимости (7.1.1) (при известной оценке параметра u) и убедившись, что опытные точки рассеиваются вдоль прямой, по методу наименьших квадратов найдем оценки величин . Введем обозначения:

Тогда вместо формулы (7.1.1) запишем

. (7.1.2)

Оценки параметров (при заданном значении параметра u) по методу наименьших квадратов будут равны

, (7.1.3)

(7.1.4)

Для оценки тесноты связи между переменными Y, X при различных значениях параметра u вычисляется выборочный коэффициент корреляции

(7.1.5)

В качестве оценки параметра u следует принять то его значение, при котором коэффициент корреляции максимален.

Аналогично приводятся к уравнению прямой функции распределения остальных типов.

Тип II: .

Вводя обозначения , получим уравнение прямой (7.1.2).

Тип II¢: .

Типы I¢, III¢: .

Из рассмотренных примеров видно, что главная трудность здесь заключается в выборе подходящего значения параметра u. Его можно найти путем подбора и вычисления при каждом значении u коэффициента корреляции. Однако имеется возможность оценить его более простым и быстрым методом.

Если построить кривую распределения в форме и график функции распределения , то мода , т.е. точка, в

которой произведение tp(t) максимально, равна

,

откуда . Подставив значение tc в функцию распределения, получим [9]

. (7.1.6)

Последняя формула справедлива для распределений I-III типов группы А. Для распределений I¢-III¢ типов справедливо равенство

. (7.1.7)

В таблице 7.1.1 приведены значения F(tc), рассчитанные по формулам (7.1.6), (7.1.7).


Таблица 7.1.1

Значение функции распределения F(tc)

 

Параметр u Тип кривой
0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,9226 0,8663 0,8209 0,7828 0,7500 0,7211 0,6954 0,6723 0,6513 0,0774 0,1337 0,1791 0,2172 0,2500 0,2789 0,3046 0,3277 0,3487 I, I¢
  0,6321 0,3679 II, II¢
-0,2 -0,4 -0,6 -0,8 -1,0 -1,5 -2 -2,5 -3 -4 -5 -10 -20 -30 -∞ 0,5981 0,5688 0,5431 0,5204 0,5000 0,4571 0,4226 0,3941 0,3700 0,3313 0,3012 0,2132 0,1412 0,1082 0,4019 0,4312 0,4569 0,4796 0,5000 0,5429 0,5774 0,6059 0,6300 0,6687 0,6988 0,7868 0,8588 0,8918 III-III¢

На основании полученных результатов можно рекомендовать следующий порядок установления типа выравнивающего распределения группы А и нахождения оценок параметров на примере плотности p(t).

1. Выбрать за начало отсчета значений случайной величины Т начало кривой распределения.

2. Найти эмпирическую моду кривой распределения .

3. Найти эмпирическое значение функции распределения в точке C и приравнять теоретическому.

4. С помощью таблицы 7.1.1 определить два значения параметра u (в предположении, что выравнивающее распределение относится либо к I-III, либо к I¢-III¢ типам).

5. По двум значениям параметра u определить два типа возможных выравнивающих распределений.

6. Для обоих типов распределений путем построения графиков проверить, ложатся ли опытные точки на прямые.

7. В качестве выравнивающего принять наиболее подходящее распределение.

Таким же образом могут быть найдены оценки параметров распределений группы А, заданных плотностями р(х), р(у). При этом плотность р(у) должна быть приведена к форме .

 







Дата добавления: 2015-12-04; просмотров: 195. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия