Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Построение системы непрерывных распределений методом обобщения





Памятка студенту

Когда ты хочешь много знать,

Не тратя лишних сил и времени,

Старайся чаще применять

Волшебный метод обобщения!

Рассмотрим три простейших распределения: равномерное, треугольное убывающее и треугольное возрастающее [9, 11].

В первом случае плотность вероятности и функция распределения задаются формулами

р(t)= a; F(t)= at= 1 –( 1 –at). (6.2.1)

Во втором случае

. (6.2.2)

В третьем случае

. (6.2.3)

Обобщим попарно функции распределения (6.2.1), (6.2.2) и (6.2.1), (6.2.3) путем введения новых параметров.

В первом случае получим

. (6.2.4)

Во втором случае

. (6.2.5)

 

 


Рис. 6.2.1. Последовательность обобщения простейших непрерывных распределений.

 

Теперь замечаем, что в формуле (6.2.4) имеется параметр u, но его нет в формуле (6.2.5). Введем его в последнюю формулу. В результате получим

, (6.2.6)
откуда дифференцированием по t найдем плотность распределения

. (6.2.7)

Последняя плотность может быть еще более расширена за счет введения нового параметра формы. Параметр b в формуле (6.2.7) используется дважды в качестве показателя степени. Пусть это будут два разных параметра. Тогда вместо (6.2.7) можем записать [9]

. (6.2.8)

В итоге получена обобщенная плотность распределения с четырьмя параметрами a, b, g, u. Нормирующий множитель N выражается через эти параметры из условия нормировки

.

Последовательность обобщения простейших распределений показана на рис. 6.2.1.

 







Дата добавления: 2015-12-04; просмотров: 188. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия