Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Группа симметричных распределений





Тип кривой Плотность симметричного распределения Границы кривой
Ic
IIc
IIIc-Vc

Распределения функций случайного аргумента

Из обобщенной плотности (6.2.8) можно получить другие распределения как функции случайного аргумент а.

Если две случайные величины Х, Т связаны между собой функциональной зависимостью X=f(T), причем с ростом Х растет Т, то вероятность P(X < x) = F(x) должна быть равна вероятности P(T < t) = F(t), т.е.

F(x) = F(t). (6.4.1)

Найдем зависимость между плотностями распределения р(х) и р(t).

По правилу дифференцирования сложной функции из (6.4.1) имеем

. (6.4.2)

Воспользуемся последней формулой для нахождения других обобщенных плотностей.

Пусть между двумя случайными величинами Т, Х существует взаимосвязь Т = еХ. Тогда и, следовательно,

. (6.4.3)

Характерной особенностью этой обобщенной плотности является то, что кривые III-V типов при являются симметричными.

Если , то таким же путем получим еще одну обобщенную плотность

. (6.4.4)

 
 

Кривые распределения, заданные тремя обобщенными плотностями p(x), p(t), p(y), имеют разнообразную форму. Например, для кривой I типа, заданной плотностью p(t), существуют формы начала и конца кривой, которые представлены ниже.

Рис.6.4.1. Формы начала кривой в зависимости от значений параметра g=kb.

 
 

Рис. 6.4.2. Формы конца кривой в зависимости от значений
параметра u.

 







Дата добавления: 2015-12-04; просмотров: 194. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия