Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Группа симметричных распределений





Тип кривой Плотность симметричного распределения Границы кривой
Ic
IIc
IIIc-Vc

Распределения функций случайного аргумента

Из обобщенной плотности (6.2.8) можно получить другие распределения как функции случайного аргумент а.

Если две случайные величины Х, Т связаны между собой функциональной зависимостью X=f(T), причем с ростом Х растет Т, то вероятность P(X < x) = F(x) должна быть равна вероятности P(T < t) = F(t), т.е.

F(x) = F(t). (6.4.1)

Найдем зависимость между плотностями распределения р(х) и р(t).

По правилу дифференцирования сложной функции из (6.4.1) имеем

. (6.4.2)

Воспользуемся последней формулой для нахождения других обобщенных плотностей.

Пусть между двумя случайными величинами Т, Х существует взаимосвязь Т = еХ. Тогда и, следовательно,

. (6.4.3)

Характерной особенностью этой обобщенной плотности является то, что кривые III-V типов при являются симметричными.

Если , то таким же путем получим еще одну обобщенную плотность

. (6.4.4)

 
 

Кривые распределения, заданные тремя обобщенными плотностями p(x), p(t), p(y), имеют разнообразную форму. Например, для кривой I типа, заданной плотностью p(t), существуют формы начала и конца кривой, которые представлены ниже.

Рис.6.4.1. Формы начала кривой в зависимости от значений параметра g=kb.

 
 

Рис. 6.4.2. Формы конца кривой в зависимости от значений
параметра u.

 







Дата добавления: 2015-12-04; просмотров: 194. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия