Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнение прямой





Оценки параметров кривых роста вычисляются по методу наименьших квадратов. При этом уравнение кривой должно быть приведено к линейному виду

. (11.3.1)

Рассеяние отдельных значений случайной величины Х относительно прямой (11.3.1) должно описываться первой системой непрерывных распределений (SNR1), поскольку здесь последующие значения случайной величины Хt+ 1 образуются из предыдущих Хt путем прибавления постоянной величины В (см. свойства SNR1).

Если фактические уровни временного ряда Хt получены как средние значения в моменты времени t (условные средние), то их рассеяние относительно прямой (11.3.1) может быть описано нормальным законом, который является частным случаем SNR1

или с учетом (11.3.1)

. (11.3.2)

Плотность (11.3.2) представляет собой вариационно-динамическую модель и содержит три параметра: А, В, σ. Их оценки можно найти по методу наибольшего правдоподобия. Для этого вначале прологарифмируем выражение (11.3.2)

и запишем логарифмическую функцию правдоподобия, представляющую собой математическое ожидание логарифма плотности распределения

.

Далее из условий

найдем уравнения правдоподобия:

Из первого уравнения имеем

.

Величина представляет собой остаточную дисперсию, несмещенная оценка которой равна

. (11.3.3)

Из второго и третьего уравнений путем замены соответствующих математических ожиданий их оценками получим систему двух уравнений с двумя неизвестными А, В:

Решение этой системы дает

(11.3.4)

. (11.3.5)

Сделаем некоторые выводы.

Оценки параметров А, В, полученные по методу наибольшего правдоподобия, совпадают с оценками метода наименьших квадратов. Оценка дисперсии совпадает с ее оценкой по методу моментов.

В качестве критерия точности выравнивания временного ряда может быть принят минимум остаточной дисперсии

или минимум суммы квадратов отклонений эмпирических значений уровней ряда от теоретической прямой

.

В этом случае коэффициент корреляции должен быть максимальным.

Полученные результаты позволяют оценить нижнюю и верхнюю границы уровня временного ряда при заданной доверительной вероятности Р

, (11.3.6)

где величина Z зависит от доверительной вероятности Р и числа степеней свободы ν, которое связано с числом точек n. При малых n величина Z определяется по таблицам распределения Стьюдента.

При Р = 0,9 величину Z можно рассчитать по формуле

, (11.3.7)

которая получена автором путем выравнивания табличных данных по формуле (11.2.3).

Произведение ZS является показателем точности аппроксимации при заданной надежности (доверительной вероятности) Р.







Дата добавления: 2015-12-04; просмотров: 201. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия