Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение криволинейного интеграла первого рода.





Рассмотрим в трехмерном пространстве с заданной декартовой системой координат ОXYZ некоторую кривую Г (см. рис. 1). Декартовы координаты точек кривой будем обозначать через .

 

Определение 1. Кривая, заданная уравнением

, , (1)

называется непрерывной кусочно-гладкой, если функции и непрерывны на отрезке и отрезок может быть разбит точками на конечное число отрезков таким образом, что на каждом из этих частичных отрезков функции и имеют непрерывные производные, не обращающиеся одновременно в .

Рис. 1. К определению кривой.

Пусть на кривой Г , где , задана непрерывная функция , где – точка на кривой.

Рис. 2. Разбиение кривой Г.

 

Зададим разбиение T кривой Г точками , (см. рис. 2). На каждой из дуг выберем по произвольной точке с координатами (ξ k, η k, ζ k) и составим интегральную сумму:

, (2)

где Δ sk – длина дуги .

 

Определение 2. Криволинейным интегралом первого рода от функции по кривой Г называется предел интегральной суммы (2) при бесконечном увеличении числа n точек деления и бесконечном уменьшении длин дуг , если этот предел существует и не зависит ни от способа разбиения T, ни от выбора точек на дугах:

(3)

Для криволинейного интеграла по замкнутой кривой Г используется иное обозначение:

Существование криволинейного интеграла устанавливает следующая теорема:

 

Теорема 1. Если Г – непрерывная кусочно-гладкая кривая и функция f (M) непрерывна на ней, то криволинейный интеграл первого рода (3) от функции f (M) существует и определен однозначно.

 

Теорема 2. Если кривая Г задана уравнениями (1), а функция непрерывна на этой кривой, то криволинейный интеграл первого рода от функции находится по формуле

(4)

 

Замечание. При использовании формулы (4) следует обращать внимание на то, чтобы при изменении параметра от до дифференциалы и были неотрицательными, поскольку выражение

задает элемент длины дуги, который отрицательным быть не может.

 

ПРИМЕР 1. Найти интеграл , где кривая Г – дуга окружности с центром в начале координат и радиуса 1 между точками А (0, 1) и В (1, 0). Введем на кривой Г параметризацию: . Тогда . Здесь модуль раскрывается со знаком «–» поскольку при интегрировании от точки А до точки В параметр изменяется в интервале от π /2 до 0 и, следовательно, . Применяя формулу (4), получим:

ПРИМЕР 2. На кривой Г, заданной параметрическими уравнениями , распределена масса с плотностью . Определить массу кривой. Кривая Г представляет собой два витка спирали (см. рис.3). Для определения ее массы воспользуемся процедурой, аналогичной применявшейся при введении понятия криволинейного интеграла. Проведем разбиение T кривой Г

точками на элементарные дуги . На каждой дуге выберем по точке и будем считать, что плотность кривой на этой дуге постоянна и равна значению ρ(Mk) плотности в точке . Тогда масса элементарной дуги равна произведению плотности на длину дуги: Δ mk = ρ(Mk)·Δ sk. Масса всей кривой равна сумме масс всех элементарных дуг: . Полученное выражение представляет собой интегральную сумму криволинейного интеграла первого рода функции ρ(М) по дуге Г.

С уменьшением длин дуг разбиения исходной кривой интегральная сумма приближается к искомой массе. В пределе получаем:

Рис.3. К примеру 2.

Замечание. В случае кривой на плоскости:

(5)

сохраняются определения и остаются справедливыми все теоремы, сформулированные выше. В соответствующих формулах нужно лишь убрать третью координату или ζ k.

ПРИМЕР 3. Вычислить интеграл , где Г – четверть эллипса , лежащая в первом квадрате (см. рис. 5). Пусть для определенности . Введем параметризацию дуги: , . Тогда, используя теорему 2, получаем

 







Дата добавления: 2015-12-04; просмотров: 236. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Studopedia.info - Студопедия - 2014-2026 год . (0.014 сек.) русская версия | украинская версия