Студопедия — Определение криволинейного интеграла первого рода.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение криволинейного интеграла первого рода.






Рассмотрим в трехмерном пространстве с заданной декартовой системой координат ОXYZ некоторую кривую Г (см. рис. 1). Декартовы координаты точек кривой будем обозначать через .

 

Определение 1. Кривая, заданная уравнением

, , (1)

называется непрерывной кусочно-гладкой, если функции и непрерывны на отрезке и отрезок может быть разбит точками на конечное число отрезков таким образом, что на каждом из этих частичных отрезков функции и имеют непрерывные производные, не обращающиеся одновременно в .

Рис. 1. К определению кривой.

Пусть на кривой Г , где , задана непрерывная функция , где – точка на кривой.

Рис. 2. Разбиение кривой Г.

 

Зададим разбиение T кривой Г точками , (см. рис. 2). На каждой из дуг выберем по произвольной точке с координатами (ξ k, η k, ζ k) и составим интегральную сумму:

, (2)

где Δ sk – длина дуги .

 

Определение 2. Криволинейным интегралом первого рода от функции по кривой Г называется предел интегральной суммы (2) при бесконечном увеличении числа n точек деления и бесконечном уменьшении длин дуг , если этот предел существует и не зависит ни от способа разбиения T, ни от выбора точек на дугах:

(3)

Для криволинейного интеграла по замкнутой кривой Г используется иное обозначение:

Существование криволинейного интеграла устанавливает следующая теорема:

 

Теорема 1. Если Г – непрерывная кусочно-гладкая кривая и функция f (M) непрерывна на ней, то криволинейный интеграл первого рода (3) от функции f (M) существует и определен однозначно.

 

Теорема 2. Если кривая Г задана уравнениями (1), а функция непрерывна на этой кривой, то криволинейный интеграл первого рода от функции находится по формуле

(4)

 

Замечание. При использовании формулы (4) следует обращать внимание на то, чтобы при изменении параметра от до дифференциалы и были неотрицательными, поскольку выражение

задает элемент длины дуги, который отрицательным быть не может.

 

ПРИМЕР 1. Найти интеграл , где кривая Г – дуга окружности с центром в начале координат и радиуса 1 между точками А (0, 1) и В (1, 0). Введем на кривой Г параметризацию: . Тогда . Здесь модуль раскрывается со знаком «–» поскольку при интегрировании от точки А до точки В параметр изменяется в интервале от π /2 до 0 и, следовательно, . Применяя формулу (4), получим:

ПРИМЕР 2. На кривой Г, заданной параметрическими уравнениями , распределена масса с плотностью . Определить массу кривой. Кривая Г представляет собой два витка спирали (см. рис.3). Для определения ее массы воспользуемся процедурой, аналогичной применявшейся при введении понятия криволинейного интеграла. Проведем разбиение T кривой Г

точками на элементарные дуги . На каждой дуге выберем по точке и будем считать, что плотность кривой на этой дуге постоянна и равна значению ρ(Mk) плотности в точке . Тогда масса элементарной дуги равна произведению плотности на длину дуги: Δ mk = ρ(Mk)·Δ sk. Масса всей кривой равна сумме масс всех элементарных дуг: . Полученное выражение представляет собой интегральную сумму криволинейного интеграла первого рода функции ρ(М) по дуге Г.

С уменьшением длин дуг разбиения исходной кривой интегральная сумма приближается к искомой массе. В пределе получаем:

Рис.3. К примеру 2.

Замечание. В случае кривой на плоскости:

(5)

сохраняются определения и остаются справедливыми все теоремы, сформулированные выше. В соответствующих формулах нужно лишь убрать третью координату или ζ k.

ПРИМЕР 3. Вычислить интеграл , где Г – четверть эллипса , лежащая в первом квадрате (см. рис. 5). Пусть для определенности . Введем параметризацию дуги: , . Тогда, используя теорему 2, получаем

 







Дата добавления: 2015-12-04; просмотров: 210. Нарушение авторских прав; Мы поможем в написании вашей работы!



Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

Studopedia.info - Студопедия - 2014-2024 год . (0.013 сек.) русская версия | украинская версия