Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Физические приложения криволинейного интеграла первого рода.





1) Масса материальной линии. Пусть материальная (например, пространственная) кривая Г имеет в каждой своей точке линейную плотность массы Тогда масса кривой Г равна:

Точно такая же формула для полного заряда Q, расположенного на материальной (например, плоской) кривой Г, если известна линейная плотность зарядов

в каждой точке

2) Координаты центра масс. Пусть материальная (например, пространственная) кривая Г имеет в каждой своей точке линейную плотность массы Тогда центр масс имеет координаты:

где - масса этой кривой, и

 

 

Аналогично находятся координаты центра масс плоской линии.

3) Определение. Центроидом кривой Г (нематериальной, просто геометрической фигуры) называется центр масс этой кривой с любой постоянной полностью (например, равной единице). Например, если кривая Г расположена в плоскости XOY, то её центроид имеет координаты:

где и - длина кривой Г.

4) Первая формула Гульдина. Площадь поверхности, полученная вращением вокруг оси кривой, расположенной в плоскости оси вращения по одну сторону от неё, равна произведению длины этой кривой окружности, которую описывает при вращении центроид этой кривой, т.е.

где L - длина кривой, - расстояние от центроида кривой до оси вращения.

5) Момент инерции. Пусть материальная (например, пространственная) кривая Г имеет в каждой своей точке линейную плотность массы Тогда момент инерции кривой Г относительно некоторой оси s равен

где расстояние от точки до оси s. Например, если s есть ось OX, то

6) Ньютонов (гравитационный или электрический) потенциал материальной кривой Г в данной точке расположенной вне этой кривой Г, имеющей линейную плотность (массы или соответственно заряда)

 

 

где - расстояние от произвольной точки до точки , т.е.

 







Дата добавления: 2015-12-04; просмотров: 252. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия