Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Связь криволинейных интегралов первого и второго рода.





Пусть на плоской кривой Г даны две произвольные точки и (см. рис. 12). Обозначим через длину кривой между точками и , через - абсциссу вектора , а через - его ординату. Из криволинейного треугольника (см. рис. 14) по теореме Пифагора получаем: Пусть - угол между вектором и осью абсцисс, а - угол между касательной к кривой Г в точке (предельным направлением вектора при ) и положительным направлением оси. Тогда при имеем . Кроме того, при малом значении можно считать, что . Поскольку то при получаем:

Рис. 12. К выводу формулы связи криволинейных

интегралов первого и второго рода.

 

В случае пространственной кривой касательная в точке (предельное положение луча, направленного по вектору образует с координатными осями OX, OY, и OZ углы , соответственно, а вектор образует с теми же осями углы (см. рис. 13). При этом

а Тогда в пределе при получаем:

Подставив эти соотношения в интегральные суммы для криволинейных интегралов первого и второго рода, приходим при (а значит, и ) к равенству соответствующих интегралов:

(1)

где - функции точки М.

Рис. 13. К выводу формулы связи криволинейных

интегралов первого и второго рода.

 

Замечание. В двумерном случае (см. рис. 12) связь криволинейных интегралов первого и второго рода определяется формулой, аналогичной (1):

 

2.5. Физические приложения криволинейного интеграла второго рода.
Начнём с вопроса о работе силы при перемещении материальной точки вдоль

некоторой траектории. В самом простом случае, когда точка перемещается вдоль прямой, а сила направлена в сторону движения точки, работа равна модулю силы, умноженному на величину перемещения . Если вектор составляет с направлением движения точки угол , но сама сила постоянна, то , т.е. работа равна произведению тангенциальной составляющей силы на величину перемещения. То же самое можно записать в виде скалярного произведения

(см. рис. 14).

Рис. 14. Рис. 15.


Теперь предположим, что движение происходит не по прямой, а по криволинейной траектории, а сила зависит от положения материальной точки .Чтобы сохранить предыдущие рассуждения, следует разбить траекторию на малые части,

причём каждую часть можно считать прямолинейной, а силу в пределах это части - постоянной, тогда на частичной дуге траектории работа силы равна (см. рис.15). Точка может быть выбрана любая в пределах данной частичной дуги (в силу малости дуги сила не зависит от выбора этой точки). Чтобы получить работу силы на всей траектории, нужно суммировать работы на всех частичных дугах:

Чтобы равенство стало точным, следует перейти к пределу разбиения траектории на бесконечно малые части. Предел является криволинейным интегралом второго рода:

 







Дата добавления: 2015-12-04; просмотров: 228. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия